Tag: distances and midpoints

Questions Related to distances and midpoints

If the equation of the pair of straight lines passing through the point $(1, 1)$, one making an angle $\theta$ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis, is $x^2 - (a + 2)xy + y^2 + a(x + y -1) =0,   a  \neq 2$, then the value of sin 2$\theta$ is

  1. $a-2$

  2. $a+2$

  3. $\displaystyle \frac{2}{a+2}$

  4. $\displaystyle \frac{2}{a}$


Correct Option: C
Explanation:

The lines will be
$y-1=\tan A(x-1)$
and $y-1=\cot A(x-1)$
Therefore their joint equation will be
$(y-1-\cot A(x-1))(y-1-\tan A(x-1))=0$
$(y-1)^{2}-(\cot A+ \tan A)(x-1)(y-1)+(x-1)^{2}=0$
$y^2-2y+1-(\cot A+\tan A)(xy-x-y+1)+(x^2-2x+1)=0$
$x^2+y^2-(\cot A+\tan A)(xy)+((\cot A+\tan A)-2)(x+y-1)=0$
Comparing coefficients we get
$\cot A+\tan A=a+2$
$\dfrac {1}{\sin A \cos A}=a+2$

$2\sin A\cos A=\dfrac{2}{a+2}$
$=\sin 2A$
$=\sin 2\theta$

The combined equation of two sides of an equilateral tringle is $x^{2}-3y^{2}-2x+1=0$. If the length of a side of the triangle is $4$ then the equation of the third side is

  1. $x=2\sqrt{3}+1$

  2. $y=2\sqrt{3}+1$

  3. $x+2\sqrt{3}=1$

  4. $x=2\sqrt{3}$


Correct Option: A,C
Explanation:

$x^{2}-3y^{2}-2x+1=0$

$(x-1)^{2}=3y^{2}$

$x-1=\pm\sqrt{3}y$

Hence the equation of the sides are 

$x-\sqrt{3}y=1$ and $x+\sqrt{3}y=1$

They intersect at $(1,0)$. Hence one of the vertex will be $(1,0)$.

Now we can clearly observe that the equation of the third side will be perpendicular to x-axis and parallel to y-axis since

$x-\sqrt{3}y=1$ and $x+\sqrt{3}y=1$ are equally inclined to positive x axis- one in clockwise sense and another in anticlockwise sense, and both have the same x-intercept while equal and opposite y intercept. In other words we can imagine $x-\sqrt{3}y=1$ as the image of the line $x+\sqrt{3}y=1$ with respect to x axis.

Hence the third line will be of the form $x=c$.

Now distance of the vertex $(1,0)$ from the above line will be 

$=asin60^{0}$

$=4sin60^{0}$

$=2\sqrt{3}$.

$=\dfrac{|1-c|}{1}$

Or 

$|1-c|=2\sqrt{3}$

Hence

$c-1=2\sqrt{3}$

$c=2\sqrt{3}+1$ and $c=-2\sqrt{3}+1$

Hence the corresponding equations are 

$x=2\sqrt{3}+1$ and $x+2\sqrt{3}=1$.

If $4xy+2x+2fy+3=0$ represents a pair of lines then $f=$

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: B
Explanation:
By factorising,
$4xy+2x+2fy+3=0$
$2x\left(2y+1\right)+3\left(\dfrac{2fy}{3}+1\right)=0$
$\Rightarrow \dfrac{2f}{3}=2$
$\Rightarrow f=3$
$\therefore$ the value of $f=3$

If the two pair of lines $x^2-2mxy-y^2=0$ and $x^2-2nxy-y^2=0$ are such that one of them represents the bisectors of the angles between the other, then 

  1. $mn+1=0$

  2. $mn-1=0$

  3. $1/m+1/n=0$

  4. $1/m -1/n=0$


Correct Option: A

If the equation of the pair of straight lines passing through the point $(1, 1),$ one making an angle $\theta$ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis is $x^{2}- (a + 2)xy + y^{2} + a(x + y -1) = 0, a \neq -2,$ then the value of $\sin 2\theta $ is

  1. $a -2$

  2. $a + 2$

  3. $\dfrac2{(a + 2)}$

  4. $ \dfrac2a$


Correct Option: C
Explanation:

Equations of the given lines are $y -1 = \tan \theta (x -1) $ and $y -1 =\ cot \theta (x -1)$ 


so their joint equation is 

$[(y-1)-\tan \theta (x -1)][(y -1) -\cot \theta (x-1)] = 0$

$\Rightarrow (y -1)^{2} -(\tan \theta +\cot \theta) (x-l)(y -1) +(x-l)^{2}= 0$

$\Rightarrow x^{2} -(\tan \theta + cot \theta) xy + y^{2} + (\tan \theta+ \cot \theta -2) (x+y -1)=0$

Comparing with the given equation we get $\tan \theta + \cot \theta= a + 2$

$\displaystyle \Rightarrow \frac{1}{\sin \theta \cos\theta }= a + 2 \Rightarrow \sin 2\theta = \frac{2}{a+2}$

The absolute value of difference of the slope of the lines $\displaystyle x^{2}\left ( \sec ^{2}\theta -\sin ^{2}\theta  \right )-2xy\tan \theta +y^{2}\sin ^{2}\theta =0$ is

  1. $-2$

  2. $\dfrac{1}{2}$

  3. $2$

  4. $1$


Correct Option: C
Explanation:
Given pair of lines
$x^2(\sec^2\theta-\sin^2\theta)-2xy\tan\theta+y^2\sin^2\theta=0$

$y^2\sin^2\theta-2xy\tan\theta+x^2(\sec^2\theta-\sin^2\theta)=0$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\tan^2\theta-4\sin^2\theta x^2(\sec^2\theta-\sin^2\theta)}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\tan^2\theta-4\tan^2\theta x^2+4x^2\sin^4\theta}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm\sqrt{4x^2\sin^4\theta}}{2\sin^2\theta}$

$y=\dfrac{2x\tan\theta\pm2x\sin^2\theta}{2\sin^2\theta}$

$y=\dfrac{(\tan\theta\pm\sin^2\theta)}{\sin^2\theta}x$

On comparing above equation with $y=mx+c$ we get
$m=\dfrac{(\tan\theta\pm\sin^2\theta)}{\sin^2\theta}$

Here $m _{1}=\dfrac{(\tan\theta+\sin^2\theta)}{\sin^2\theta}$ and $m _{2}=\dfrac{(\tan\theta-\sin^2\theta)}{\sin^2\theta}$

$m _{1}-m _{2}=\dfrac{(\tan\theta+\sin^2\theta)}{\sin^2\theta}-\dfrac{(\tan\theta-\sin^2\theta)}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=\dfrac{\tan\theta+\sin^2\theta-\tan\theta+\sin^2\theta}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=\dfrac{2\sin^2\theta}{\sin^2\theta}$

$\Rightarrow m _{1}-m _{2}=2$

Two pair of straight lines have the equation $\displaystyle x^{2}+6xy+9y^{2}=0: : and: : ax^{2}+2bxy+cy^{2}=0 $. If one line among them is common, then the value of $9a - 6b + c$ is

  1. $1$

  2. $3$

  3. $0$

  4. $2$


Correct Option: C
Explanation:
Given pairs 
$x^2+6xy+9y^2=0$

$(x+3y)^2=0\Rightarrow x=-3y$

On comparing $3y=-x$ with $y=mx+c$ we get slope 

$m=-\dfrac{1}{3}$
Second pair of line 

$cy^2+2bxy+ax^2=0$

$y=\dfrac{-2bx\pm\sqrt{4b^2x^2-4acx^2}}{2c}$

$y=\dfrac{-2bx\pm2x\sqrt{b^2-ac}}{2c}$


$y=\left (\dfrac{-b\pm \sqrt{b^2-ac}}{c}  \right )x$

On comparing above eq with $y=mx+c$ we get 

$m _{1}=\dfrac{-b+ \sqrt{b^2-ac}}{c}$ and $m _{2}=\dfrac{-b- \sqrt{b^2-ac}}{c}$

Here one line is common in both pairs so slope will be same 

$m _{1}=-\dfrac{1}{3}$

$\dfrac{-b+ \sqrt{b^2-ac}}{c}=-\dfrac{1}{3}$

$-3b+3 \sqrt{b^2-ac}=-c$

$3 \sqrt{b^2-ac}=-c+3b$

On squaring both sides 
$9b^2-9ac=c^2+9b^2-6bc$
$9ac+c^2-6bc=0$
$c(9a-6b+c)=0$
$c=0$ and $9a-6b+c=0$

If the equation $ax^{3}+3bx^{2}y+3cxy^{2}+dy^{3}=0$ $(a, b,c, d\neq 0)$ represents three coincident lines, then 

  1. $a=c$

  2. $b=d$

  3. $\displaystyle {\frac{a}{b}=\frac{b}{c}=\frac{c}{d}}$

  4. $ac=bd$


Correct Option: C
Explanation:

$ax^3+3bx^2y+3cxy^2+dy^3=0$  ---(1)   represent three coincident line

Let $ y=mx$ is that line

$(y-mx)^3=0$

$y^3+3m^2xy-3y^2(mx)-m^3n^3=0$

$m^3x^3+3mny^2-3m^2xy-y^3=0$   ---(2)

Compare 1 & 2,

$\dfrac{a}{m^3}=\dfrac{b}{m}=\dfrac{c}{-m^2}=\dfrac{d}{-1}$

$\therefore \dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$

lf the equation of the pair of straight lines passing through the point $(1,1 )$ , one making an angle ` $\theta$' with the postive direction of x-axis and the other making the same angle with the positive direction of y-axis is $x^{2}-(a+2)xy+y^{2}+a(x+y-1)=0$, $a\neq-2$, then the value of $\sin 2\theta$ is

  1. $a-2$

  2. $a+2$

  3. $\frac{\displaystyle 2}{\displaystyle a+2}$

  4. $\frac{\displaystyle 2}{\displaystyle a}$


Correct Option: C
Explanation:

Equations of the given lines are 
$y-1=\tan { \theta  } \left( x-1 \right) $ and $y-1=\cot { \theta  } \left( x-1 \right) $
Their combined equation is 
$\left( y-1-\tan { \theta  } \left( x-1 \right)  \right) \left( y-1-\cot { \theta  } \left( x-1 \right)  \right) =0\ \Rightarrow { x }^{ 2 }-\left( \tan { \theta  } +\cot { \theta  }  \right) xy+{ y }^{ 2 }+\left( \tan { \theta  } +\cot { \theta  } -2 \right) \left( x+y-1 \right) =0$
Comparing this with given equation we get
$\tan { \theta  } +\cot { \theta  } =a+2\ \Rightarrow \cfrac { 1 }{ \sin { \theta  } \cos { \theta  }  } =a+2\ \Rightarrow \sin { 2\theta  } =\cfrac { 2 }{ a+2 } $

If $P _{1},\ P _{2},\ P _{3}$ be the product of perpendiculars from $(0,0)$ to $xy+x+y+1=0$, $x^{2}-y^{2}+2x+1=0$, $2x^{2}+3xy-2y^{2}+3x+y+1=0$ respectively then?

  1. $P _{1} < P _{2}< P _{3}$

  2. $P _{3} < P _{2}< P _{1}$

  3. $P _{2} < P _{3}< P _{1}$

  4. $P _{1} < P _{3}< P _{2}$


Correct Option: B
Explanation:
Given 
$xy+x+y+1=0$
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $h=\dfrac{1}{2},g=\dfrac{1}{2},f=\dfrac{1}{2},c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{1}=\left | \dfrac{1}{\sqrt{4\left ( \dfrac{1}{2} \right )^2}} \right |$
$P _{1}=\dfrac{1}{\sqrt{4\left ( \dfrac{1}{4} \right )}} $
$P _{1}=\dfrac{1}{\sqrt{1}} $
$P _{1}=1$
Now given eq $x^2-y^2+2x+1=0$ 
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $a=1,b=-1,h=0,g=1,f=0,c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{2}=\left | \dfrac{1}{\sqrt{\left ( 1+1 \right )^2}} \right |$
$P _{2}=\dfrac{1}{\sqrt{4}} $
$P _{2}=\dfrac{1}{2} $

Now given eq $2x^2+3xy-2y^2+3x+y+1=0$ 
comparing above eq with $ax^2+2hxy+by^2+2gx+2fy+c=0$
we get $a=2,b=-2,h=\dfrac{3}{2},g=\dfrac{3}{2},f=\dfrac{1}{2},c=1$
Product of perpendicular from origin is $\left | \dfrac{c}{\sqrt{(a-b)^2+4h^2}} \right |$ 
$P _{3}=\left | \dfrac{1}{\sqrt{\left ( 2+2 \right )^2-4\left ( \dfrac{3}{2} \right )^2}} \right |$
$P _{3}=\left | \dfrac{1}{\sqrt{16-4\left ( \dfrac{9}{4} \right )}} \right |$
$P _{3}=\left | \dfrac{1}{\sqrt{16-9}} \right |$
$P _{3}=\dfrac{1}{\sqrt{7}} $

SO $P _{3}< P _{2}< P _{1}$