Tag: explaining wave phenomena

Questions Related to explaining wave phenomena

If a torch is used in place of monochromatic light in Young's experiment what will happens?

  1. Fringe will appear for a moment then, it will disappear

  2. Fringes will occur as from monochromatic light

  3. Only bright fringes will appear

  4. No fringes will appear


Correct Option: D

In Young's double slit experiment if monochromatic light used is replaced by white light, then

  1. all bright fringes become white.

  2. all bright fringes have colors between violet and red.

  3. no fringes are observed.

  4. only central fringe is white, all other fringes are colored.


Correct Option: D
Explanation:

Thus if we use white light in place of monochromatic light the central fringe is white, containing on either side a few coloured fringes (in order VIBGYOR) and the remaining screen appears uniformly illuminated.

On a rainy day, small oil films on water show brilliant colours. This is due to

  1. dispersion

  2. interference

  3. diffraction

  4. polarization


Correct Option: B
Explanation:

Interference 

Interference is a phenomenon in which two waves superimpose to form a resultant wave of greater, lower or same amplitude. 

In Young's double slit experiment, the wavelength of red light $7500\overset {\circ}{A}$ and that of blue light is $5000\overset {\circ}{A}$. The value of $n$ for which $n^{th}$ bright band due to red light coincides with $(n + 1)^{th}$ bright band due to blue light, is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

For bright 

distance $y=n\lambda \cfrac { D }{ d } \ \therefore \quad n=7500\cfrac { D }{ d } =(n+1)5000\cfrac { D }{ d } \ \therefore \quad \cfrac { n }{ n+1 } =\cfrac { 2 }{ 3 } \ \therefore \quad n=2\quad $

In $YDSE$ how many maxima can be obtained on the screen if wavelength of light used is $200\ nm$ and $d = 700\ nm$.

  1. $12$

  2. $7$

  3. $18$

  4. $None\ of\ these$


Correct Option: B
Explanation:

$Given\quad that\quad \lambda =200nm,\quad d=700nm\ \theta =\frac { \lambda  }{ d } \ We\quad know\quad that\quad maximum\quad angle\quad can\quad be\quad { 90 }^{ 0 }.\ No\quad of\quad rings\quad that\quad can\quad be\quad obtained\quad say\quad n,\ (n)=\frac { sin90 }{ sin\theta  } =\frac { 1 }{ sin\theta  } \ If\quad \theta \quad is\quad so\quad small\quad then-\ n=\frac { 1 }{ \theta  } \ =\frac { d }{ \lambda  } =\frac { 7 }{ 2 } \ No\quad of\quad maxima\quad =2n\ \quad \quad \quad =2\times \frac { 7 }{ 2 } \ \quad \quad \quad =7$

In a Young's double slit experiment the intensity at a point where the path difference is $ \dfrac { \lambda  }{ 6 } $ ($\lambda $ being the wavelength of the light used) is $I$. if ${ I } _{ 0 }$ denotes the maximum intensity, is equal to

  1. $\dfrac { 1 }{ \sqrt { 2 } } $

  2. $\dfrac { \sqrt { 3 } }{ 2 } $

  3. $\dfrac { 1 }{ 2 } $

  4. $\dfrac { 3 }{ 4 } $


Correct Option: D
Explanation:

For maximum intensity $\phi =0$

Assume that ${ I } _{ 1 }={ I } _{ 2 }={ I } _{ 3 }$(source intensity)

$\therefore { I } _{ 0 }={ I } _{ 3 }+{ I } _{ 2 }+2\sqrt { { I } _{ 2 }{ I } _{ 3 } } \\ { I } _{ 0 }={ 4I } _{ 3 }\longrightarrow 1\\ \Delta x=\cfrac { \lambda  }{ 6 } \\ \therefore \Delta \phi =\cfrac { 2\pi  }{ \lambda  } \Delta x\quad =\cfrac { 2x }{ \lambda  } \times \cfrac { \lambda  }{ 6 } \\ \quad \quad \quad \quad =\cfrac { \pi  }{ 3 } \\ \therefore I={ I } _{ s }+{ I } _{ s }+2\sqrt { { I } _{ s }{ I } _{ s } } \cos { \cfrac { \pi  }{ 3 }  } \\ \quad \quad =3{ I } _{ 3 }\\ I=\cfrac { 3 }{ 4 } { I } _{ 0 }$

 

In Young's double slit experiment using monochromatic light of wavelengths $\lambda$, the intensity of light at a point on the screen with path difference $\lambda$ is M units. The intensity of light at a point where path difference is $\lambda/3$ is then

  1. $\frac{M}{2}$

  2. $\frac{M}{4}$

  3. $\frac{M}{8}$

  4. $\frac{M}{16}$


Correct Option: B
Explanation:

Resultant intensity
$I _R = I _1 + I _2 + 2\sqrt{I _1 I _2} cos \theta$
If path difference = $\lambda$ phase difference $2 \pi$
$\therefore I _R = I + I + 2 \sqrt{I \times I} cos 2 \pi = 4 I = M$
If path difference $\dfrac{\lambda}{3}$, phase difference $\phi = \dfrac{2 \pi}{3} rad$
$I _R' = I + I + 2 \sqrt{I \times I} cos \dfrac{2 \pi}{3} = I = \dfrac{M}{4}$