Tag: finding ratios

Questions Related to finding ratios

Two numbers are respectively 20% and 50% more than a third number The ratio of the two numbers is

  1. 2 : 5

  2. 3 : 5

  3. 4 : 5

  4. 6 : 7


Correct Option: C
Explanation:

Let the third number be x.
Then first number=120% of x=$\frac{120}{100}\times x=\frac{6x}{5}$
Second number=150% of x$\frac{150}{100}\times x=\frac{3x}{2}$
$\therefore$Ratio of first two number=$\frac{6x}{5}:\frac{3x}{2}=12x:15x=4:5$

If $\displaystyle M=a\left ( m+n \right )$ and $\displaystyle N=b(m-n)$ then the value of  $\displaystyle \left ( \frac{M}{a}+\frac{N}{b} \right )\div \left ( \frac{M}{a}-\frac{N}{b} \right )$ is :

  1. $\displaystyle \frac{m}{n}$

  2. $\frac{n}{m}$

  3. 1


  4. $\frac{1}{2}$


Correct Option: A
Explanation:

$\displaystyle \frac{M}{a}=m+n;\frac{N}{b}=m-n$
$\displaystyle \therefore \left ( \frac{M}{a}+\frac{N}{b} \right )\div \left ( \frac{M}{a}-\frac{N}{b} \right )=2m\div 2n=\frac{m}{n}$

If the sides of two squares are in the ratio 2:1, the ratio of the areas of the two squares will be ___________.

  1. 1:2

  2. 3:1

  3. 4:1

  4. 3:4


Correct Option: C
Explanation:
Let the side of one square is $2x$ and the side of other square is $x$ of the two squares.

So, the ratio of the areas

$=\dfrac {(2x)^2}{x^2}=\dfrac{4x^2}{x^2}=\dfrac 41$ or $4:1.$

Ratio of 250ml to 2L is

  1. 25 : 200

  2. 8 : 1

  3. 1 : 8

  4. 120 : 300


Correct Option: C
Explanation:

We know,

1L = 1000ml
Therefore, 2L=2000ml
Ratio = 250:2000= 1:8

The length and width of a tape are 2m and 28cm. Write their ratio.

  1. 100 : 14

  2. 7 : 50

  3. 50 : 7

  4. 1 : 8


Correct Option: C
Explanation:

Length = 2m = 200 cm
 Width = 28 cm
$\dfrac{Length}{ Width}$ = $\dfrac{200}{28}$


$= \dfrac {50 }{7}$

The three quantities $a,\,b,\,c$ are said to be in continued proportion if

  1. $b^2=ac$

  2. $ab=c$

  3. $a+b=c$

  4. $b^2=a+c$


Correct Option: A
Explanation:

The three quantities $a,\,b,\,c$ are said to be in continued proportion if $a:b::b:c$
$\Longrightarrow\dfrac{a}{b}=\dfrac{b}{c}$
$\Longrightarrow a\times c=b^2$
$\Longrightarrow b^2=ac$

If $a:b:c=A:B:C$ is equivalent to

  1. $a+A=b+B=c+C$

  2. $\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}$

  3. $\dfrac{a}{B}=\dfrac{b}{A}=\dfrac{c}{C}$

  4. $\dfrac{a}{C}=\dfrac{b}{B}=\dfrac{c}{A}$


Correct Option: B
Explanation:

The $a:b:c=A:B:C$
can be represented by ratio representation is
$ratio=\dfrac{a}{A}=\dfrac{b}{B}=\dfrac{c}{C}$

If $2:9 : : x:18$, then find the value of $ x$

  1. $2$

  2. $3$

  3. $4$

  4. $5$


Correct Option: C
Explanation:

$\dfrac{2}{9}=\dfrac{x}{18}$
$\Rightarrow\;9x=36$
$\Rightarrow\;x=4$

In what ratio must a grocer mix two varieties of pulses costing Rs.$15$ and Rs.$20$ per kg respectively so as to get a mixture worth Rs.$16.50$ kg?

  1. $3 : 7$

  2. $5 : 7$

  3. $7 : 3$

  4. $7 : 5$


Correct Option: C
Explanation:

Consider the amount of pulse of price $Rs15$ $=x$


And the amount of pulse of price $Rs20$ $=y$

Then the total amount of mixture $=15x+20y$

But the price per $kg$ of mixture $=Rs16.50$

So, total price of $x+y kg$ $=16.50(x+y)$

Now according to the equation 

$16.50(x+y)=15x+20y$

$16.50x+16.50y=15x+20y$

$1.50x=3.50y$

$\frac { x }{ y } =\frac { 3.50 }{ 1.50 } \ =\frac { 0.7 }{ 0.3 } =\frac { 7 }{ 3 } $

Hence, required Ratio is $7:3$

So, the Option $C$ is the correct answer.

In each of the following questions find out the alternative which will replace the question mark.
123 : 13$^2$ :: 235 : ?

  1. $23^2$

  2. $35^2$

  3. $25^3$

  4. $25^2$


Correct Option: C
Explanation:

As, $123\rightarrow 13^2$
As, $235 \rightarrow 25^3$ 
The middle digit of first term becomes power to the next term.