Tag: finding ratios

Questions Related to finding ratios

In an office the working hours are 10.30 AM to 5.30 PM and in between 30 minutes are spent on lunch. Find the ratio of office hours to the time spent for lunch.

  1. 7:30`

  2. 1:14

  3. 14:1

  4. 30:7


Correct Option: C
Explanation:

Office hours
$= 10.30$ AM to $5.30$ AM=
 $i.e., 7 hrs = 420 min$.
Lunch time $= 30$ min
$420:30$
14:1

In a class there are 50 boys and 30 girls. The ratio of the number of boys to the number of girls in the class is. 

  1. $80 : 50$

  2. $3 : 5$

  3. $5 : 3$

  4. none


Correct Option: C
Explanation:

To find the ratio of two numbers, we have to consider their fraction. 


Here, it is given that there are $50$ boys and $30$ girls in the class, then the ratio of the number of boys to the number of girls is:

$\dfrac { 50 }{ 30 } =\dfrac { 5 }{ 3 } =5:3$

Hence, the ratio of the number of boys to the number of girls is $5:3$.

If $a:b=5:7$ and $b:c=6:11$, then $a:b:c=$

  1. $55:77:66$

  2. $30:42:77$

  3. $35:49:42$

  4. $50:48:49$


Correct Option: B
Explanation:

$b:c=\begin{pmatrix}6\times\dfrac{7}{6}\end{pmatrix}:\begin{pmatrix}11\times\dfrac{7}{6}\end{pmatrix}=7:\dfrac{77}{6}$
$a:b:c=5:7:\dfrac{77}{6}=30:42:77$

The continued ratio of $4 : 3$ and $5 : 6$ is ____

  1. $4 : 15 : 6$

  2. $4 : 5 : 6$

  3. $20 : 15 : 12$

  4. $20 : 15 : 18$


Correct Option: D
Explanation:

$Ratio 1 = 4 : 3$
$Ratio 2 = 5 : 6$
Multiplying ratio $1$ by antecedent of ratio $2$ and ratio $2$ by consequent of ratio $1$,
Ratio $1 = 20 : 15$
Ratio $2 = 15 : 18$
Thus, for two ratios $a : b$ and $b : c, a : b : c$ is called the continued ratio.
$\therefore 20 : 15 : 18$ is the continued ratio for $4 : 3$ and $5 : 6$.

The continued ratio of $2 : 5$ and $6 : 7$ is _____

  1. $2 : 5 : 7$

  2. $2 : 5 : 6$

  3. $12 : 30 : 35$

  4. $12 : 10 : 42$


Correct Option: C
Explanation:

$R _{1}$ = $2 : 5$
$R _{2}$ =$ 6 : 7$
Multiplying the LCM of the consequent of ratio $1$ and antecedent of ratio $2$, to both the ratios.
$R _1$ = $12 : 30$
$R _2$ = $30 : 35$
Thus, the continued ration for $2 : 5$ and $6 : 7$ is $12 : 30 : 35$

The ratio between the ages of $A$ and $B$ is $2 : 5$. After $8$ years, their ages will be in the ratio $1 : 2$. What is the difference between their present ages?

  1. $20$ years

  2. $22$ years

  3. $24$ years

  4. $25$ years


Correct Option: C
Explanation:

Let $A = 2x; B = 5x$ be the present ages of $A$ and $B$ respectively.
After $8$ years, their ages will be $(2x + 8)$ years and $(5x + 8)$ years respectively.
Therefore, $ (2x + 8) : (5x + 8) : : 1 : 2$
$\Rightarrow  (5x + 8)\times 1 = 2(2x + 8)$
$\Rightarrow x = 8$
Thus difference of their present ages is $5x - 2x = 3x$ i.e., $24$ years.

For $\dfrac { { 2 }^{ 2 }+{ 4 }^{ 2 }+{ 6 }^{ 2 }+....+{ \left( 2n \right)  }^{ 2 } }{ { 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+....+{ \left( 2n-1 \right)  }^{ 2 } }$ to exceed $1.01$, the maximum value of $n$ is

  1. 149

  2. 150

  3. 151

  4. 152


Correct Option: B
Explanation:

Given


$\dfrac { { 2 }^{ 2 }+{ 4 }^{ 2 }+{ 6 }^{ 2 }....+{ (2n) }^{ 2 } }{ { 1 }^{ 2 }{ +3 }^{ 2 }{ +5 }^{ 2 }{ ....+(2n-1) }^{ 2 } } =\dfrac { \sum { { (2n) }^{ 2 } }  }{ \sum { { (2n-1) }^{ 2 } }  } $

$\sum { { (2n) }^{ 2 }=\sum { 4{ n }^{ 2 } } =4\times \sum { { n }^{ 2 } } =\dfrac { 4(n)(n+1)(2n+1) }{ 6 }  } $[since $\sum { { n }^{ 2 } } =\dfrac { (n)(n+1)(2n+1) }{ 6 } $]

$\sum { { (2n-1) }^{ 2 }=\sum { 4{ n }^{ 2 }+1-4n } =4\sum { { n }^{ 2 }+\sum { 1 }  }  } -4\sum { n } =\dfrac { 4(n)(n+1)(2n+1) }{ 6 } +n-\dfrac { 4(n)(n+1) }{ 2 } $[since $\sum { { n }^{ 2 }= } \dfrac { (n)(n+1) }{ 2 } $]

Now solving numerator and denominator we get

$\dfrac { { 4n }^{ 2 }+6n+2 }{ 4{ n }^{ 2 }-1 } $ to exceed $1.01$

 $n\Rightarrow$  $\in[0,150]$

Therefore maximim value of $n$ is 150.

The sum of two number is $50$. If the number are in the ration $2 : 3$. Find the number.

  1. $20,30$

  2. $10,40$

  3. $15,35$

  4. $25,25$


Correct Option: A
Explanation:

Let the two numbers be $2x$ and $3x.$ Thus,


$2x+3x=50$

$5x=50$

$x=10$

Thus, the required numbers are $20$ and $30$.

In a box, the ratio of the number of red marbles to that of blue marbles is $4 : 7$. which of the following could be the total number of in the box?

  1. $14$

  2. $21$

  3. $22$

  4. $28$


Correct Option: C
Explanation:

$With\quad ratios,add\quad all\quad the\quad parts\quad together\quad to\quad get\quad a\quad total.In\quad this\quad case,it\quad is\quad 4red\quad and\quad 7blue.$


$7+4=11.$

$Therefore,the\quad lowest\quad total\quad number\quad of\quad marbles\quad is11.The\quad answer\quad will\quad be\quad any\quad number\quad divisible\quad by\quad 11.$

$Hence\quad it\quad is\quad 22.$

If A : B = 7 : 5 and B : C = 9 : 11, then A : B : C is equal to

  1. 55:45:63

  2. 63:45:55

  3. 45:63:55

  4. None of these


Correct Option: B
Explanation:

$A:B=7:5\B:C=9:11$

Let $A=7p, B=5p\B=9q,C=11q\\because 5p=99\ \therefore p=\cfrac{99}{5}\ \therefore A=7\times\cfrac{99}{5}=\cfrac{639}{5}\ \therefore A:B:C=\cfrac{639}{5}:9q:11q\A:B:C=63:45:55$
Option B