Tag: comparison of irrational numbers
Questions Related to comparison of irrational numbers
Which is greater $\displaystyle (\sqrt{7}+\sqrt{10})$ or $\displaystyle (\sqrt{3}+\sqrt{19})$?
$\displaystyle \sqrt[4]{3},\sqrt[6]{10},\sqrt[12]{25}$, when arranged in descending order will be
The greatest amongst the the values $0.7 + \sqrt { 0.16 } , 1.02 - \displaystyle\frac { 0.6 }{ 24 } , 1.2 \times 0.83$ and $\sqrt { 1.44 } $ is
Which of the following is smallest?
Arrange the following surds in ascending order of their magnitudes: $\sqrt{5},\sqrt [ 3 ]{ 11 } ,2\sqrt [ 6 ]{ 3 } $
Write $\displaystyle \sqrt[4]{6},\sqrt{2},\sqrt[3]{4}$ in ascending order
State true or false
Which is greater?
${ \left( \cfrac { 1 }{ 2 } \right) }^{ 1/2 } $ or ${ \left( \cfrac { 2 }{ 3 } \right) }^{ 1/3 } $
The correct descending order of the following surds is
$ \sqrt [3]{2}$, $\sqrt 3$, $\sqrt 4$, $\sqrt 5$