Tag: comparison of irrational numbers

Questions Related to comparison of irrational numbers

Which one of the following is an irrational number?

  1. $\sqrt[3]{-27}$

  2. $\sqrt{2}(3\sqrt{2}+2\sqrt{8})$

  3. $\dfrac{3\sqrt{18}}{2\sqrt{6}}$

  4. $\sqrt{\dfrac{1}{2}}\cdot\sqrt{\dfrac{25}{2}}$

  5. $\dfrac{2\sqrt{5}}{\sqrt{45}}$


Correct Option: C
Explanation:

Option A: $\sqrt [ 3 ]{ -27 } ={ (-3) }^{ 3\times \frac { 1 }{ 3 }  }=-3$
Option B: $\sqrt { 2 } (3\sqrt { 2 } +2\sqrt { 8 } )=\sqrt { 2 } (3\sqrt { 2 } +4\sqrt { 2 } )=\sqrt { 2 } (7\sqrt { 2 } )=14$
Option C: $\dfrac { 3\sqrt { 18 }  }{ 2\sqrt { 6 }  } =\dfrac { 3\sqrt { 3 }  }{ 2 } $
Option D: $\sqrt { \dfrac { 1 }{ 2 }  } \sqrt { \dfrac { 25 }{ 2 }  } =\dfrac { 5 }{ 2 } $
Option E: $\dfrac { 2\sqrt { 5 }  }{ \sqrt { 45 }  } =\dfrac { 2\sqrt { 5 }  }{ 3\sqrt { 5 }  } =\dfrac { 2 }{ 3 } $
Therefore, all are rational except option $C$.