Tag: normal to an ellipse
Questions Related to normal to an ellipse
Length of latusrectum of the ellipse $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{b^{2}}=1$, if the normal, at an end of latusrectum passes through one extremity of the minor axis, then equation of eccentricity of ellipse is
The normal of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ at a point $P(x _1,y _1)$ on it, meets the x-axis in $G$. $PN$ is perpendicular to $OX$, where $O$ is origin. The value of $\frac{l(OG)}{l(ON)}$ is -
The maximum number of normals that can be drawn from any point outside of an ellipse, in general, is
The line $y = mx - \displaystyle \frac{(a^2 - b^2)m }{\sqrt{a^2+ b^2 m^2}}$ is normal to the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all values of $m$ belongs to:
If the length of perpendicular drawn from origin to any normal to the ellipse $\cfrac{{x}^{2}}{16}+\cfrac{{y}^{2}}{25}=1$ is $l$, then $l$ cannot be
If the normal at an end of a latus-rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, the eccentricity of the ellipse is given by:
If the normal at one end of the latus rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, then:
The normal to the curve x$^2$ = 4y passing (1,2) is
The line $l x + m y = n$ is a normal to the ellipse $\dfrac { x ^ { 2 } } { a ^ { 2 } } + \dfrac { y ^ { 2 } } { b ^ { 2 } } = 1 ,$ if