Tag: normal to an ellipse
Questions Related to normal to an ellipse
Find where the line $\displaystyle 2x+y=3$ cuts the curve $\displaystyle 4x^{2}+y^{2}=5.$ Obtain the equations of the normals at the points of intersection and determine the co-ordinates of the point where these normals cut each other.
If $y=mx+7\sqrt{3}$ is normal to $\dfrac{x^2}{18}-\dfrac{y^2}{24}=1$ then the value of m can be?
The normal at a point $P$ on the ellipse $x^{2}+4y^{2}=16$ meets the x-axis at $Q.$ If $M$ is the mid point of the line segment $PQ$, then locus of $M$ intersects the latus rectums of the given ellipse at the points.
The eccentric angle of the point where the line, $5x\, -\, 3y\, =\, 8\sqrt{2}$ is a normal to the ellipse $\displaystyle\frac{x^2}{25}\, +\, \frac{y^2}{9}\,=\,1$ is
On the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } =1$, one of the points at which the normals are parallel to the line $2x-y=1$ is
The equation of the normal to the ellipse $\displaystyle\frac{x^2}{a^2}\,+\,\frac{y^2}{b^2}\,=\,1$ at the positive end of latus rectum is :
Area of the triangle formed by the ${x}$ axis, the tangent and normal at $(3,2)$ to the ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ is
Find the area of the rectangle formed by the perpendiculars from the center of the ellipse $\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ to the tangent and normal at a point whose eccentric angle is $\displaystyle\frac{\pi}{4}.$
Assertion (A): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at $P(\displaystyle \frac{\pi}{4})$ is $5x-3y-8\sqrt{2}=0$
Reason (R): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $P(x _{1},y _{1})$ is $\displaystyle \frac{a^{2}x}{x _1}-\frac{b^{2}y}{y _1}=a^{2}-b^2$
The maximum distance of any normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from the centre is: