Tag: random variables and probability distribution

Questions Related to random variables and probability distribution

If $X$ is a Poisson variate with parameter $1.5$, then $P(X>1)$ is

  1. $1-e^{-1.5}$

  2. $e^{-1.5}(2.5)$

  3. $1-e^{-1.5}(2.5)$

  4. $1-e^{-1.5}(3.5)$


Correct Option: C
Explanation:

$P(X>1)$
$=1-[P(X=0)+P(X=1)]$
$=1-[e^{-1.5}+1.5e^{-1.5}]$
$=1-e^{1.5}(1+1.5)$
$=1-e^{1.5}(2.5)$

If $X$ is a poisson variate such that $P(X=0)=P(X=1)$,then $P(X=2)=$

  1. $\dfrac{e}{2}$

  2. $\dfrac{e}{6}$

  3. $\dfrac{1}{6e}$

  4. $\dfrac{1}{2e}$


Correct Option: D
Explanation:

$P(X=0)=P(X=1) $
P$(0; \mu) = \dfrac { { e }^{-\mu}{\mu}^{0}}{0!} =  P(1; \mu) = \dfrac { { e }^{-\mu}{\mu}^{1}}{1!}$
$ { e }^{-\mu}  (1 - \mu )$ = 0 
 $\mu = 1 $
P(X=2) = $ \dfrac { { e }^{-\mu}{\mu}^{2}}{2!} = \dfrac{{ e }^{-1}}{2} = \dfrac {1}{2e} $

A random variable $X$ follows poisson distribution such that $P(X=k)=P(X=k+1)$ then the parameter of the distribution $\lambda =$

  1. $K$

  2. $K+1$

  3. $\dfrac{K}{2}$

  4. $\dfrac{K+1}{2}$


Correct Option: B
Explanation:

$P(X=k)=P(X=k+1)$
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $


$ P(k;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ k } }{ k! } =P(k+1;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ k+1 } }{ (k+1)! }$

$ 1 = \dfrac {\mu}{k+1} $

$ \mu = k+1 $

In a poisson distribution $P(X=0)=P(X=1)=k$, then the value of $k$ is

  1. $1$

  2. $\displaystyle\frac{1}{e}$

  3. $e$

  4. $\sqrt{2}$


Correct Option: B
Explanation:

$P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! }$

Given,$P(X=0)=P(X=1)=k $

$ \dfrac { { e }^{ -\mu }{ \mu }^{ 0 } }{ 0! } =\dfrac { { e }^{ -\mu }{ \mu }^{ 1 } }{ 1! }  $
$ { e }^{ -\mu } ={ e }^{ -\mu } \mu $
$ { e }^{ -\mu } (1 - \mu) = 0 $ 
Since $ { e }^{ -\mu } \neq 0$ , => $ \mu = 1 $
$ P(X=0) = \dfrac { { e }^{ -\mu }{ \mu }^{ 0 } }{ 0! } = { e }^{ -\mu } ={ e }^{ - 1} = \dfrac {1}{e} $

If for a poisson variable $ X$, $P(X=1)=2.\ P(X=2)$, then the parameter $\lambda $ is

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: B
Explanation:

For Poisson's distribution, $P(X)$ is given by 
$\displaystyle P(X)=\frac { { e }^{ -\lambda  }.{ \lambda  }^{ x } }{ x! } $
Hence $\displaystyle P(X=1) =\displaystyle  \frac { { e }^{ -\lambda }.{ \lambda  }^{ 1 } }{ 1! } $.
Similarly $\displaystyle P(X=2)=\frac { { e }^{ -\lambda }.{ \lambda  }^{ 2 } }{ 2! } $.
Given that, $P(X=1) = 2 P(X=2)$
$\Rightarrow \displaystyle \frac { { e }^{ -\lambda }.{ \lambda  }^{ 1 } }{ 1! } =2.\frac { { e }^{ -\lambda }.{ \lambda  }^{ 2 } }{ 2! } $
Simplifying we get $\lambda = 1$

If $X$ is a Poisson variate such that $P(X=1) = P(X=2)$ then $P(X=4)=$

  1. $\dfrac{1}{2e^{2}}$

  2. $\dfrac{1}{3e^{2}}$

  3. $\dfrac{2}{3e^{2}}$

  4. $\dfrac{1}{e^{2}}$


Correct Option: C
Explanation:

$P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! }$
$P(X=1) = P(X=2)$


$\dfrac { { e }^{ -\mu }{ \mu }^{ 1 } }{ 1! } =\dfrac { { e }^{ -\mu }{ \mu }^{ 2 } }{ 2! } $

$ \mu = 2 $
$ P(X=4)= \dfrac { { e }^{ -2 }{ 2 }^{ 4 } }{ 4! }= \dfrac {2}{3{e}^{2}} $

If a random variable $X$ follows a P.D. such that $P(X=1)=P(X=2)$, then $P(X=0)=$

  1. $e^{2}$

  2. $\dfrac{1}{e^{2}}$

  3. $\dfrac{1}{e}$

  4. $e$


Correct Option: B
Explanation:

$ P(X=1)=P(X=2)$
 $P$$(1; \mu) = \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} =  P(2; \mu) = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!}$
$ { e }^{-\mu} [\mu (2 - \mu )]$ $= 0$

either $\mu = 0  or  \mu = 2 $
$P(X=0) = $$ \dfrac { { e }^{-\mu}{\mu}^{0}}{0!} = { e }^{-\mu}$

So, either $ { e }^{-0}$or ${ e }^{-2}$
that is 1 or $\dfrac {1}{{ e }^{2}} $

If the first two terms of a Poisson distribution are equal to $k$, find $k$.

  1. $e$

  2. $\displaystyle \frac{1}{e}$

  3. $1$

  4. $2$


Correct Option: B
Explanation:

Poisson's distribution implies
$P(X=n)=\dfrac{\lambda^{n}e^{-\lambda}}{n!}$
Where mean=variance=$\lambda$
Hence $P(x=0)=P(x=1)$
$\dfrac{\lambda^{0}e^{-\lambda}}{0!}=\dfrac{\lambda^{1}e^{-\lambda}}{1!}$
$\lambda=1$
Hence $P(X=0)=P(X=1)$
$=\dfrac{1}{e}$

In a binomial distribution $n = 200, p = 0.04$. Taking Poisson distribution as an approximation to the binomial distribution .
Assertion (A) :- Mean of the Poisson distribution $= 8$
Reason (R) : In a Poisson distribution, $\displaystyle P(X=4)=\frac{512}{3e^{8}}$

  1. both A and R are true and R is the correct explanation of A

  2. both A and R are true and R is not correct explanation of A

  3. A is true but R is false

  4. A is false but R is true


Correct Option: B
Explanation:

mean of P.D. $=np = 8$
And $P(X = 4) = \cfrac{e^{-8}(8)^4}{4!}=\cfrac{512}{3e^8}$
Hence both statement are correct but they are not related to each other.

If $X$ is a random poission variate such that $2P(X=0)+P(X=2)=2P(X=1)$ then $E(X)=$

  1. $4$

  2. $3$

  3. $2$

  4. $1$


Correct Option: C
Explanation:

Poisson's distribution implies
$P(X=n)=\dfrac{\lambda^{n}e^{-\lambda}}{n!}$
Where mean=variance=$\lambda$
Hence $2.P(x=0)+P(x=2)=2P(x=1)$
$2\dfrac{\lambda^{0}e^{-\lambda}}{0!}+\dfrac{\lambda^{2}e^{-\lambda}}{2!}=2\dfrac{\lambda^{1}e^{-\lambda}}{1!}$


$2e^{-\lambda}+\dfrac{\lambda^{2}e^{-\lambda}}{2!}=2\lambda: e^{-\lambda}$

$2\lambda: e^{-\lambda}-2e^{-\lambda}=\dfrac{\lambda^{2}e^{-\lambda}}{2!}$
$4\lambda-4=\lambda^{2}$
$\lambda^{2}-4\lambda+4=0$
$(\lambda-2)^{2}=0$
$\lambda=2$
Hence mean=variance=$2$