Tag: random variables and probability distribution
Questions Related to random variables and probability distribution
If $X$ is a Poisson variate with parameter $1.5$, then $P(X>1)$ is
If $X$ is a poisson variate such that $P(X=0)=P(X=1)$,then $P(X=2)=$
A random variable $X$ follows poisson distribution such that $P(X=k)=P(X=k+1)$ then the parameter of the distribution $\lambda =$
In a poisson distribution $P(X=0)=P(X=1)=k$, then the value of $k$ is
If for a poisson variable $ X$, $P(X=1)=2.\ P(X=2)$, then the parameter $\lambda $ is
If $X$ is a Poisson variate such that $P(X=1) = P(X=2)$ then $P(X=4)=$
If a random variable $X$ follows a P.D. such that $P(X=1)=P(X=2)$, then $P(X=0)=$
If the first two terms of a Poisson distribution are equal to $k$, find $k$.
In a binomial distribution $n = 200, p = 0.04$. Taking Poisson distribution as an approximation to the binomial distribution .
Assertion (A) :- Mean of the Poisson distribution $= 8$
Reason (R) : In a Poisson distribution, $\displaystyle P(X=4)=\frac{512}{3e^{8}}$
If $X$ is a random poission variate such that $2P(X=0)+P(X=2)=2P(X=1)$ then $E(X)=$