Tag: random variables and probability distribution

Questions Related to random variables and probability distribution

If the probability of that a poisson variable $X$ takes a positive value $\geq 1$ is $1-e^{-1.5}$, then the varianceof the distribution is

  1. $4$

  2. $3$

  3. $1.5$

  4. $0$


Correct Option: C
Explanation:

Given $P(X\geq 1) = 1-e^{-1.5}$
$\Rightarrow 1-P(X=0)=1-e^{-1.5}\Rightarrow P(X=0)=e^{-1.5}=e^{-\lambda}\therefore \lambda = 1.5$

In a town $10$ accidents take place in a span of $50$ days. Assuming that number of accidents follows Poisson distribution, the probability that there will be atleast one accident on a selected day at random is

  1. $\displaystyle \frac{e^{-0.02}.2^{1}}{1!}$

  2. $1-e^{-0.2}$

  3. $e^{-0.2}$

  4. $1-e^{1.2}$


Correct Option: B
Explanation:

Here Poisson parameter $\lambda = \cfrac{10}{50}=0.2$
$\therefore P(x \geq 1)=1-P(X=0)=1-\cfrac{e^{-0.2}.(.2)^0}{0!}=1-e^{-0.2}$ 

A car hire firm has $2$ cars which it hires out day by day. If the number of demands for a car on each day follows Poisson distribution with parameter $1.5$, then the probability that both the cars is used is

  1. $1.12 \times e^{-1.5}$

  2. $1-2.5 \times e^{-1.5}$

  3. $1-3.625 \times e^{-1.5}$

  4. $3.625 \times e^{-1.5}$


Correct Option: B
Explanation:

Here $\lambda = 1$
Hence probability that both the cars are used $=1-P(X=0)-P(X=1)=1-\cfrac{e^{-1.5}(1.5)^0}{0!}-\cfrac{e^{-1.5}(1.5)^1}{1!}=1-2.5e^{-1.5}$

If $X$ is a Poisson variate with parameter $\displaystyle \frac{3}{2}$, find $P(X\geq 2)$

  1. $\displaystyle \frac{5}{2}e^{\frac{-3}{2}}$

  2. $\displaystyle 1-\frac{5}{2}e^{\frac{-3}{2}}$

  3. $\displaystyle 1-e^{\frac{-3}{2}}$

  4. $\displaystyle e^{\frac{-3}{2}}$


Correct Option: B
Explanation:

Here $\lambda = \cfrac{3}{2}$
$\therefore P(X\geq 2) = 1-P(X=0)-P(X=1)$
$\displaystyle =1-\cfrac{e^{-3/2}(3/2)^0}{0!}-\cfrac{e^{-3/2}(3/2)^1}{1!}=1-\cfrac{5}{2}e^{-3/2}$

If $X$ is a random Poisson variate such that $P(X=0)=\displaystyle\frac{1}{e}$, then the variance of the same distribution is

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A
Explanation:

Poisson's distribution implies
$P(X=n)=\dfrac{\lambda^{n}e^{-\lambda}}{n!}$
Where mean=variance=$\lambda$
Hence $P(x=0)=\frac{1}{e}$
$\dfrac{\lambda^{0}e^{-\lambda}}{0!}=\dfrac{1}{e}$
$\lambda=1$
Hence mean=variance=$1$

If on an average ,5 percent of the output in a factory making certain parts, is defective and that 200 units are in a package then the probability that atmost 4 defective parts may be found in that package is

  1. $\displaystyle e^{-10}\left [ 1+\frac{100}{1!}+\frac{100^{2}}{2!}+\frac{100^{3}}{3!}+\frac{100^{4}}{4!} \right ]$

  2. $\displaystyle e^{-10}\left [ 1+\frac{10}{1!}+\frac{10^{2}}{2!}+\frac{10^{3}}{3!}+\frac{10^{4}}{4!} \right ]$

  3. $\displaystyle e^{-10}\left [ 1-\frac{10}{1!}+\frac{10^{2}}{2!}+\frac{10^{3}}{3!}+\frac{10^{4}}{4!} \right ]$

  4. $\displaystyle e^{-10}\left [ 1-\frac{100}{1!}+\frac{100^{2}}{2!}+\frac{100^{3}}{3!}+\frac{100^{4}}{4!} \right ]$


Correct Option: B
Explanation:

Here $\lambda$
$=\dfrac{5}{100}.200$
$=10$.
Hence by applying Poisson distribution, we get that the probability that atmost 4 defective part are found is 
$=\sum _{k=0} ^{k=4} \dfrac{e^{-10}.10^{k}}{k!}$

$=e^{-10}[1+\dfrac{10}{1!}+\dfrac{10^{2}}{2!}+\dfrac{10^{3}}{3!}+\dfrac{10^{4}}{4!}]$.

Suppose $300$ misprints are distributed randomly throughout a book of $500$ pages. The probability that a given page contains, at least one misprint is 

  1. $1.e^{-0.6}$

  2. $1-e^{-0.6}$

  3. $(0.6)e^{-0.6}$

  4. $(0.06)e^{-0.6}$


Correct Option: B
Explanation:

Here $\lambda = \cfrac{300}{500}=0.6$
Hence $ P(X\geq 1) = 1-P(X=0)=1-\cfrac{e^{-0.6}(0.6)^0}{0!}=1-e^{-0.6}$

A manufactured product on an average has 2 defects per unit of product produced. If the number of defects follows Poisson distribution, the probability of finding at least one defect is 

  1. $e^{-2}$

  2. $1-e^{-2}$

  3. $\displaystyle \frac{e^{-2}2^{1}}{1!}$

  4. $e^{-0.02}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region.
$x$: The actual number of successes that occur in a specified region.
$P(x$; $ \mu $): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
$ P(x \ge 1; \mu) = 1 - P (x=0 ; \mu) $
$ \mu = 2 $    
$x = 0$ (No defective product) 
$ P(x \ge 1; 2) = 1 - P (x=0 ; 2) = 1 - \dfrac { { e }^{ -2 }{ 2 }^{ 0} }{ 0! } = 1 - {e}^{-2}$
                             

A car hire firm has $2$ cars which it hires out day by day. If the number of demands for a car on each day follows poisson distribution with parameter $1.5$, then the probability that only one car is used is

  1. $e^{-1.5}$

  2. $1.5\times e^{-1.5}$

  3. $1-2.5\times e^{-1.5}$

  4. $1-1.5\times e^{-1.5}$


Correct Option: B
Explanation:

Here $\lambda = 1.5$
Hence probability that only one car is used is $=P(X=1) = \cfrac{e^{-1.5}(1.5)}{1!}=1.5e^{-1.5}$

If $3$% of electric bulbs manufactured by a company are defective, the probability that a sample of $100$ bulbs has no defective bulbs is

  1. 0

  2. $e^{-3}$

  3. $1-e^{-3}$

  4. $3e^{-3}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region.
x: The actual number of successes that occur in a specified region.
P(x;$ \mu $ ): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
$ \mu = 100 \times 0.03 = 3 $    
$x = 0$ (No defective bulbs) 
$ P(0; 3)=\dfrac { { e }^{ -3 }{ 3 }^{ 0 } }{ 0! }  $
$P(0;3)={ e }^{ -3 } $