Tag: poisson distribution
Questions Related to poisson distribution
If $X$ is a random poisson variate such that $\alpha =p(X=1)=p(X=2)$, then $p(X=4)=$
-
$2\alpha $
-
$\dfrac{\alpha }{3}$
-
$\alpha e^{-2}$
-
$\alpha e^{2}$
In Poisson distribution such that $ \alpha = p(X=1)=p(X=2) $
$ p(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $
=> $ \alpha = \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!} $ => $ \alpha = { e }^{-\mu}{\mu} $
=> $ { e }^{-\mu}{\mu} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2} $
=> $ \mu = 2 $
$ p(4; \mu) = \dfrac { { e }^{-\mu}{\mu}^{4}}{4!} = \dfrac { { e }^{ -\mu }{ \mu \times { \mu }^{ 3 } } }{ 24 } = \dfrac { \alpha {\times { 2 }^{ 3 } } }{ 24 } = \dfrac { \alpha }{ 3 } $
The variance of P.D. with parameter $\lambda $ is
-
$\lambda $
-
$\sqrt{\lambda }$
-
$\dfrac{1}{\lambda}$
-
$\dfrac{1}{\sqrt {\lambda}}$
$E[{ X }^{ 2 }]= \sum _{ k=0 }^{ \infty }{ k^{ 2 } } \sum _{ }^{ }{ } \dfrac { 1 }{ k! } \lambda ^{ k }e^{ -\lambda }\ \ = ^{ k }e^{ -\lambda }\sum _{ 1 }^{ \infty }{ k\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } \= ^{ k }e^{ -\lambda }(\sum _{ 1 }^{ \infty }{ (k-1)\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } ) +\sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ =^{ k }e^{ -\lambda }(\sum _{ 2 }^{ \infty }{ (\lambda \dfrac { 1 }{ (k2)! } \lambda ^{ k-2 } } )+ \sum _{ 1 }^{ \infty }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ = ^{ k }e^{ -\lambda }(\sum _{ i=0 }^{ \infty }{ (\lambda \dfrac { 1 }{ i! } \lambda ^{ i } } )+ \sum _{ j=0 }^{ \infty }{ \dfrac { 1 }{ j! } \lambda ^{ j } } )\ = ^{ k }e^{ -\lambda }(\lambda e^{ \lambda }+e^{ \lambda })\ \ = { \lambda }^{ 2 }+ \lambda \ \ Variance= E[{ X }^{ 2 }]- { E[X] }^{ 2 }\ = { \lambda }^{ 2 }+ \lambda - { \lambda }^{ 2 }\ = \lambda \ \ \ $
If a random variable $X$ has a poisson distributionsuch that $P(X=1)=P(X=2)$, its mean and varianceare
-
$1,1$
-
$2, 2$
-
$2, 3$
-
$2,4$
In Poisson distribution such that $P(X=1)=P(X=2)$
$ P(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!}$
=> $ P(1; \mu) = P(2; \mu) $
=> $ \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!} $
=> $ 1 =$ $ \dfrac {\mu}{2} $
=> $ \mu = 2 $
In Poisson distribution Variance $(m)$ is equal to mean.
Mean = Variance = $2 $
If m is the variance of P.D., then the ratio of sum of the terms in even places to the sum of the terms in odd places is
-
$e^{-m}\cosh m$
-
$e^{-m}\sinh m$
-
$\coth m$
-
$\tanh m$
Sum of the terms in Even places will be
$=e^{-m}[m+\dfrac{m^{3}}{3!}+\dfrac{m^{5}}{5!}+...]$
$=e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]$ ...(i)
Sum of the terms in Odd places will be
$=e^{-m}[1+\dfrac{m^{2}}{2!}+\dfrac{m^{4}}{4!}+...]$
$=e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]$ ...(ii)
Taking the ratio of i and ii, we get
$\dfrac{i}{ii}$
$=\dfrac{e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]}{e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]}$
$=\dfrac{e^{m}-e^{-m}}{e^{m}+e^{-m}}$
$=\dfrac{2sinhm}{2coshm}$
$=tanh(m)$.
If ${m}$ is the variance of Poisson distribution, then sum of the terms in even places is
-
$e^{-m}$
-
$e^{-m}\cosh m$
-
$e^{-m}\sinh m$
-
$e^{-m}\coth m$
If m is the variance of P. D, then P$(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $
Sum of the terms in even places = [ P$(1; \mu) + P(3; \mu) + P(5; \mu) + .........$ ]
= [$\dfrac { { e }^{-\mu}{\mu}^{1}}{1!} + \dfrac { { e }^{-\mu}{\mu}^{3}}{3!} + \dfrac { { e }^{-\mu}{\mu}^{5}}{5!} + ....... $]
= $ { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$ --------------------- (1)
Since ${ e }^{ x }=1+\dfrac { x }{ 1! } +\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{4} }{ 4! } +....$
${ e }^{ -x }=1+\dfrac {( -x )}{ 1! } +\dfrac { { (-x) }^{ 2 } }{ 2! } +\dfrac { {( -x) }^{ 3 } }{ 3! } +\dfrac { { (-x) }^{4} }{ 4! } +....$
on subtracting , we get
${e}^{x} - { e }^{-x} = 2[ x + \dfrac {{x}^{3}}{3!} + \dfrac {{x}^{5}}{5!} + .....] $
$ \dfrac {{e}^{x} - { e }^{-x}}{2} = [ x +\dfrac { { x }^{ 3 } }{ 3! } + \dfrac {{x}^{5}}{5!} + .....] $
So,
$ \dfrac {{e}^{\mu} - { e }^{-\mu}}{2} = [ x +\dfrac { { \mu }^{ 3 } }{ 3! } + \dfrac {{\mu}^{5}}{5!} + .....] $
put this value in equation (1),
Sum of the terms in even places = $ { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$
= $ { e }^{-\mu} (\dfrac {{e}^{\mu} - { e }^{-\mu}}{2}) $
= $ { e }^{-\mu} \sinh { \mu } $
= $ { e }^{-m} \sinh {m} $ [ Variance (m) is equal to mean ($\mu$) in Poisson distribution ]
If m is the variance of P.D., then the ratio of sum of the terms in odd places to the sum of the terms in even places is
-
$e^{-m}\cosh m$
-
$e^{-m}\sinh m$
-
$\coth m$
-
$\tanh m$
If m is the variance of P. D, then P$(x; \mu) = \frac { { e }^{-\mu}{\mu}^{x}}{x!} $
Sum of the terms in odd places = [ P$(0; \mu) + P(2; \mu) + P(4; \mu) + .........$ ]
= [$\dfrac { { e }^{-\mu}{\mu}^{0}}{0!} + \dfrac { { e }^{-\mu}{\mu}^{2}}{2!} + \dfrac { { e }^{-\mu}{\mu}^{4}}{4!} + ....... $]
= $ { e }^{-\mu} [ 1 + \dfrac {{\mu}^{2}}{2!} + \dfrac {{\mu}^{4}}{4!} + .......]$ --------------------- (1)
Since ${ e }^{ x }=1+\dfrac { x }{ 1! } +\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{4} }{ 4! } +....$
${ e }^{ -x }=1+\dfrac {( -x )}{ 1! } +\dfrac { { (-x) }^{ 2 } }{ 2! } +\dfrac { {( -x) }^{ 3 } }{ 3! } +\dfrac { { (-x) }^{4} }{ 4! } +....$
on adding , we get
${e}^{x} + { e }^{-x} = 2[ 1 + \dfrac {{x}^{2}}{2!} + \dfrac {{x}^{4}}{4!} + .....] $
$ \dfrac {{e}^{x} + { e }^{-x}}{2} = [ 1 +\dfrac { { x }^{ 2} }{ 2! } + \dfrac {{x}^{4}}{4!} + .....] $
So,
$ \dfrac {{e}^{\mu} + { e }^{-\mu}}{2} = [ 1+\dfrac { { \mu }^{ 2 } }{ 2! } + \dfrac {{\mu}^{4}}{4!} + .....] $
put this value in equation (1),
Sum of the terms in odd places = $ { e }^{-\mu} [ 1 + \dfrac {{\mu}^{2}}{2!} + \dfrac {{\mu}^{4}}{4!} + .......]$
= $ { e }^{-\mu} (\dfrac {{e}^{\mu} + { e }^{-\mu}}{2}) $
= $ { e }^{-\mu} \cosh { \mu } $
= $ { e }^{-m} \cosh {m} $ [ Variance (m) is equal to mean ($\mu$) in Poisson distribution ]
Similarly Sum of the terms in even places = $ { e }^{-m} \sinh {m} $
The ratio of sum of the terms in odd places to the sum of the terms in even places is = $ \dfrac { { e }^{ -m }\cosh { m } }{ { e }^{ -m }\sinh { m } } =\coth { m } $
A : the sum of the times in odd places in a P.D is $e^{-\lambda }$ cosh $\lambda$
R : cosh $\lambda =\frac{\lambda ^{1}}{1!}+\frac{\lambda ^{3}}{3!}+\frac{\lambda ^{5}}{5!}+......$
-
Both A and R are true and R is the correct
explanation of A -
Both A and R are true but R is not correct
explanation of A -
A is true but R is false
-
A is false but R is true
Considering all odd places in Poisson's Distribution, we get
$e^{-\lambda}+\dfrac{e^{-\lambda}.\lambda^{2}}{2!}+\dfrac{e^{-\lambda}.\lambda^{4}}{4!}....$
$=e^{-\lambda}[1+\dfrac{\lambda^{2}}{2!}+\dfrac{\lambda^{4}}{4!}+....]$
$=e^{-\lambda}[\dfrac{e^{-\lambda}+e^{\lambda}}{2}]$
$=e^{-\lambda}(\cosh\lambda)$.
Hence reason is false.
If $X$ is a poisson variate with $P(X=0)=P(X=1)$, then $P(X=2)$ is
-
$\dfrac{e}{2}$
-
$\dfrac{e}{6}$
-
$\dfrac{1}{6e}$
-
$\dfrac{1}{2e}$
Here, $P(X=0)=P(X=1)$
$\Rightarrow \displaystyle \frac{e^{-\lambda}\lambda^0}{0!}=\frac{e^{-\lambda}\lambda^1}{1!}\Rightarrow \lambda = 1$
$\displaystyle \therefore P(X = 2) = \frac{e^{-\lambda}1^2}{2!}=\frac{1}{2e}$
If $X$ is a random poisson variate such that $E(X^{2})=6$, then $E(X)=$
-
$-3$
-
$2$
-
$-3&2$
-
$-2$
Variance = $E(X^{ 2 }) - E[X]^{ 2 }$
Mean = Variance for P.D.
Let mean = $m$
Therefore
$m = $ $ 6 - m*m $
Hence
$m = 2$
For a Poisson variate $X$ if $P(X=2)=3P(X=3)$, then the mean of $X$ is
-
$1$
-
$1/2$
-
$1/3$
-
$1/4$
Poisson's distribution implies
$P(X=n)=\dfrac{\lambda^{n}e^{-\lambda}}{n!}$
Where mean=variance=$\lambda$
Hence $P(x=2)=3P(x=3)$
$3\dfrac{\lambda^{3}e^{-\lambda}}{3!}=\dfrac{\lambda^{2}e^{-\lambda}}{2!}$
$3\lambda=3$
$\lambda=1$
Hence mean=variance=$1$