Tag: poisson distribution

Questions Related to poisson distribution

If $X$ is a random poisson variate such that $\alpha =p(X=1)=p(X=2)$, then $p(X=4)=$

  1. $2\alpha $

  2. $\dfrac{\alpha }{3}$

  3. $\alpha e^{-2}$

  4. $\alpha e^{2}$


Correct Option: B
Explanation:

In  Poisson distribution such that  $ \alpha = p(X=1)=p(X=2) $ 
        
$   p(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $  
       => $ \alpha = \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!}  $       =>   $ \alpha =  { e }^{-\mu}{\mu}  $
                 =>  $ { e }^{-\mu}{\mu} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2} $
                 =>   $ \mu = 2 $ 
  $   p(4; \mu) = \dfrac { { e }^{-\mu}{\mu}^{4}}{4!} =  \dfrac { { e }^{ -\mu  }{ \mu \times { \mu  }^{ 3 } } }{ 24 }  = \dfrac { \alpha {\times { 2 }^{ 3 } } }{ 24 }  = \dfrac { \alpha  }{ 3 } $  

The variance of P.D. with parameter $\lambda $ is

  1. $\lambda $

  2. $\sqrt{\lambda }$

  3. $\dfrac{1}{\lambda}$

  4. $\dfrac{1}{\sqrt {\lambda}}$


Correct Option: A
Explanation:

$E[{ X }^{ 2 }]= \sum _{ k=0 }^{ \infty  }{ k^{ 2 } } \sum _{  }^{  }{  } \dfrac { 1 }{ k! } \lambda ^{ k }e^{ -\lambda  }\ \ = ^{ k }e^{ -\lambda  }\sum _{ 1 }^{ \infty  }{ k\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } \= ^{ k }e^{ -\lambda  }(\sum _{ 1 }^{ \infty  }{ (k-1)\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } ) +\sum _{ 1 }^{ \infty  }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ =^{ k }e^{ -\lambda  }(\sum _{ 2 }^{ \infty  }{ (\lambda \dfrac { 1 }{ (k2)! } \lambda ^{ k-2 } } )+ \sum _{ 1 }^{ \infty  }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ = ^{ k }e^{ -\lambda  }(\sum _{ i=0 }^{ \infty  }{ (\lambda \dfrac { 1 }{ i! } \lambda ^{ i } } )+ \sum _{ j=0 }^{ \infty  }{ \dfrac { 1 }{ j! } \lambda ^{ j } } )\ = ^{ k }e^{ -\lambda  }(\lambda e^{ \lambda  }+e^{ \lambda  })\  \ = { \lambda  }^{ 2 }+ \lambda \ \ Variance= E[{ X }^{ 2 }]- { E[X] }^{ 2 }\ = { \lambda  }^{ 2 }+ \lambda - { \lambda  }^{ 2 }\ = \lambda \ \ \ $

If a random variable $X$ has a poisson distributionsuch that $P(X=1)=P(X=2)$, its mean and varianceare

  1. $1,1$

  2. $2, 2$

  3. $2, 3$

  4. $2,4$


Correct Option: B
Explanation:

In  Poisson distribution such that $P(X=1)=P(X=2)$
    
$ P(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!}$
          =>  $ P(1; \mu)  =  P(2; \mu) $
         =>  $ \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!}  $ 
          => $ 1 =$ $ \dfrac {\mu}{2} $ 
         => $ \mu = 2 $
 In Poisson distribution Variance $(m)$ is equal to mean
       Mean = Variance  = $2 $

If m is the variance of P.D., then the ratio of sum of the terms in even places to the sum of the terms in odd places is

  1. $e^{-m}\cosh m$

  2. $e^{-m}\sinh m$

  3. $\coth m$

  4. $\tanh m$


Correct Option: D
Explanation:

Sum of the terms in Even places will be 
$=e^{-m}[m+\dfrac{m^{3}}{3!}+\dfrac{m^{5}}{5!}+...]$

$=e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]$ ...(i)
Sum of the terms in Odd places will be 
$=e^{-m}[1+\dfrac{m^{2}}{2!}+\dfrac{m^{4}}{4!}+...]$

$=e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]$ ...(ii)
Taking the ratio of i and ii, we get 
$\dfrac{i}{ii}$

$=\dfrac{e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]}{e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]}$

$=\dfrac{e^{m}-e^{-m}}{e^{m}+e^{-m}}$

$=\dfrac{2sinhm}{2coshm}$

$=tanh(m)$.


If ${m}$ is the variance of Poisson distribution, then sum of the terms in even places is

  1. $e^{-m}$

  2. $e^{-m}\cosh m$

  3. $e^{-m}\sinh m$

  4. $e^{-m}\coth m$


Correct Option: C
Explanation:

If m is the variance of P. D, then  P$(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $
Sum of the terms in even places = [ P$(1; \mu) + P(3; \mu)  + P(5; \mu) + .........$ ]


                                       =  [$\dfrac { { e }^{-\mu}{\mu}^{1}}{1!} + \dfrac { { e }^{-\mu}{\mu}^{3}}{3!} + \dfrac { { e }^{-\mu}{\mu}^{5}}{5!} + ....... $]

                                      =  $  { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$       --------------------- (1)

  Since   ${ e }^{ x }=1+\dfrac { x }{ 1! } +\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{4} }{ 4! } +....$
    ${ e }^{ -x }=1+\dfrac {( -x )}{ 1! } +\dfrac { { (-x) }^{ 2 } }{ 2! } +\dfrac { {( -x) }^{ 3 } }{ 3! } +\dfrac { { (-x) }^{4} }{ 4! } +....$ 

on subtracting , we get  
 ${e}^{x} - { e }^{-x} =  2[ x + \dfrac {{x}^{3}}{3!} + \dfrac {{x}^{5}}{5!} + .....] $
$ \dfrac {{e}^{x} - { e }^{-x}}{2} =  [ x +\dfrac { { x }^{ 3 } }{ 3! } + \dfrac {{x}^{5}}{5!} + .....] $
So, 
$ \dfrac {{e}^{\mu} - { e }^{-\mu}}{2} =  [ x +\dfrac { { \mu }^{ 3 } }{ 3! } + \dfrac {{\mu}^{5}}{5!} + .....] $
put this value in equation (1),
Sum of the terms in even places = $  { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$
                    =  $  { e }^{-\mu} (\dfrac {{e}^{\mu} - { e }^{-\mu}}{2}) $
                    = $ { e }^{-\mu} \sinh { \mu  } $
                    = $ { e }^{-m} \sinh {m} $       [ Variance (m) is equal to mean ($\mu$) in Poisson distribution ]

If m is the variance of P.D., then the ratio of sum of the terms in odd places to the sum of the terms in even places is

  1. $e^{-m}\cosh m$

  2. $e^{-m}\sinh m$

  3. $\coth m$

  4. $\tanh m$


Correct Option: C
Explanation:

If m is the variance of P. D, then  P$(x; \mu) = \frac { { e }^{-\mu}{\mu}^{x}}{x!} $
Sum of the terms in odd places = [ P$(0; \mu) + P(2; \mu)  + P(4; \mu) + .........$ ]


                                       =  [$\dfrac { { e }^{-\mu}{\mu}^{0}}{0!} + \dfrac { { e }^{-\mu}{\mu}^{2}}{2!} + \dfrac { { e }^{-\mu}{\mu}^{4}}{4!} + ....... $]

                                      =  $  { e }^{-\mu} [ 1 + \dfrac {{\mu}^{2}}{2!} + \dfrac {{\mu}^{4}}{4!} + .......]$       --------------------- (1)

  Since   ${ e }^{ x }=1+\dfrac { x }{ 1! } +\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{4} }{ 4! } +....$

    ${ e }^{ -x }=1+\dfrac {( -x )}{ 1! } +\dfrac { { (-x) }^{ 2 } }{ 2! } +\dfrac { {( -x) }^{ 3 } }{ 3! } +\dfrac { { (-x) }^{4} }{ 4! } +....$ 

on adding , we get  
 ${e}^{x} + { e }^{-x} =  2[ 1 + \dfrac {{x}^{2}}{2!} + \dfrac {{x}^{4}}{4!} + .....] $
$ \dfrac {{e}^{x} + { e }^{-x}}{2} =  [ 1 +\dfrac { { x }^{ 2} }{ 2! } + \dfrac {{x}^{4}}{4!} + .....] $
So, 
$ \dfrac {{e}^{\mu} + { e }^{-\mu}}{2} =  [ 1+\dfrac { { \mu }^{ 2 } }{ 2! } + \dfrac {{\mu}^{4}}{4!} + .....] $

put this value in equation (1),
Sum of the terms in odd places = $  { e }^{-\mu} [ 1 + \dfrac {{\mu}^{2}}{2!} + \dfrac {{\mu}^{4}}{4!} + .......]$
                    =  $  { e }^{-\mu} (\dfrac {{e}^{\mu} + { e }^{-\mu}}{2}) $
                    = $ { e }^{-\mu} \cosh { \mu  } $
                    = $ { e }^{-m} \cosh {m} $       [ Variance (m) is equal to mean ($\mu$) in Poisson distribution ]
Similarly Sum of the terms in even places =  $ { e }^{-m} \sinh {m} $ 
The ratio of sum of the terms in odd places to the sum of the terms in even places is = $ \dfrac { { e }^{ -m }\cosh { m }  }{ { e }^{ -m }\sinh { m }  } =\coth { m }   $ 

A : the sum of the times in odd places in a P.D is $e^{-\lambda }$ cosh $\lambda$ 
R : cosh $\lambda =\frac{\lambda ^{1}}{1!}+\frac{\lambda ^{3}}{3!}+\frac{\lambda ^{5}}{5!}+......$

  1. Both A and R are true and R is the correct

    explanation of A

  2. Both A and R are true but R is not correct

    explanation of A

  3. A is true but R is false

  4. A is false but R is true


Correct Option: C
Explanation:

Considering all odd places in Poisson's Distribution, we get 
$e^{-\lambda}+\dfrac{e^{-\lambda}.\lambda^{2}}{2!}+\dfrac{e^{-\lambda}.\lambda^{4}}{4!}....$

$=e^{-\lambda}[1+\dfrac{\lambda^{2}}{2!}+\dfrac{\lambda^{4}}{4!}+....]$

$=e^{-\lambda}[\dfrac{e^{-\lambda}+e^{\lambda}}{2}]$

$=e^{-\lambda}(\cosh\lambda)$.
Hence reason is false.

If $X$ is a poisson variate with $P(X=0)=P(X=1)$, then $P(X=2)$ is

  1. $\dfrac{e}{2}$

  2. $\dfrac{e}{6}$

  3. $\dfrac{1}{6e}$

  4. $\dfrac{1}{2e}$


Correct Option: D
Explanation:

Here,  $P(X=0)=P(X=1)$
$\Rightarrow \displaystyle \frac{e^{-\lambda}\lambda^0}{0!}=\frac{e^{-\lambda}\lambda^1}{1!}\Rightarrow \lambda = 1$
$\displaystyle \therefore P(X = 2) = \frac{e^{-\lambda}1^2}{2!}=\frac{1}{2e}$

If $X$ is a random poisson variate such that $E(X^{2})=6$, then $E(X)=$

  1. $-3$

  2. $2$

  3. $-3&2$

  4. $-2$


Correct Option: B
Explanation:

Variance  = $E(X^{ 2 }) - E[X]^{ 2 }$
Mean = Variance for P.D.
Let mean = $m$
Therefore
$m = $ $ 6 - m*m $
Hence
$m = 2$

For a Poisson variate $X$ if $P(X=2)=3P(X=3)$, then the mean of $X$ is

  1. $1$

  2. $1/2$

  3. $1/3$

  4. $1/4$


Correct Option: A
Explanation:

Poisson's distribution implies
$P(X=n)=\dfrac{\lambda^{n}e^{-\lambda}}{n!}$
Where mean=variance=$\lambda$
Hence $P(x=2)=3P(x=3)$
$3\dfrac{\lambda^{3}e^{-\lambda}}{3!}=\dfrac{\lambda^{2}e^{-\lambda}}{2!}$
$3\lambda=3$
$\lambda=1$
Hence mean=variance=$1$