Tag: poisson distribution

Questions Related to poisson distribution

Suppose $2$% of the people on an average are left handed. The probability of 3 or more left handed among 100 people is

  1. $3e^{-2}$

  2. $4e^{-2}$

  3. $1-5e^{-2}$

  4. $5 e^{-2}$


Correct Option: C
Explanation:

Here P.D parameter $\lambda = \cfrac{2}{100}\times 100=2$
Hence probability that 3 or more people are left handed is $=1-P(X=0)-P(X=1)-P(X=2)$
$=1-e^{-2}-\cfrac{e^{-2}2}{1!}-\cfrac{e^{-2}2^2}{2!}=1-5e^{-2}$

Suppose there is an average of $2$ suicides per year per $50,000$ population. In a city of population $1,00,000$, the probability that in a given year there are, zero suicides is

  1. $1.e^{-2}$

  2. $1-e^{-2}$

  3. $e^{-4}$

  4. $1-e^{-4}$


Correct Option: C
Explanation:

P.D parameter $\lambda = \cfrac{2}{50000}\times 100000 = 4$
Thus probability that in a year there is no suicide is $=P(X=0)=e^{-4}$

Suppose on an average $5$ out of $2000$ houses get damaged due to fire accident during summer. Out of $10,000$ houses in a locality, the probability that exactly $10$ houses will get damaged during summer is

  1. $\displaystyle \frac{e^{-5}5^{10}}{ 10!}$

  2. $\displaystyle \frac{e^{-10}10^{10}}{ 10!}$

  3. $\displaystyle \frac{e^{-25}25^{10}}{10!}$

  4. $\displaystyle \frac{e^{-15}15^{10}}{10!}$


Correct Option: C
Explanation:

Here P.D parameter $\lambda = \cfrac{5}{2000}\times 10000=25$
Hence probability that exactly 10 houses will get damaged $=P(X = 10) = \cfrac{e^{-25}(25)^{10}}{10!}$

A manufacturer who produces medicine bottles finds that $0.1$$\%$ of the bottles are defective. The bottles are packed in boxes containing $500$ bottles. A drug manufacturer buys $100$ boxes from the producer of bottles. Using Poisson distribution, the number of boxes with no defective bottle is

  1. $100\times e^{-0.1}$

  2. $100\times e^{-0.5}$

  3. $100\times e^{-0.05}$

  4. $100\times e^{-0.01}$


Correct Option: B
Explanation:

$\displaystyle p=\frac { 0.1 }{ 100 } =0.001,n=500\ \lambda =np=500\times 0.001=0.5\ N=100$
We know that $\displaystyle p\left( r \right) =e^{ -1 }\frac { { \lambda  }^{ r } }{ r! } $
Number of boxes containing no defective bottle 
$\displaystyle =N.P.\left( r=0 \right) =1000\times { e }^{ 0.5 }\frac { \left( 0.5 \right) ^{ 0 } }{ 0! } =1000\times { e }^{ -0.5 }$

A company knows on the basis of past experience that $2$% of its blades are defective. The probability of having $3$ defective blades in a sample of $100$ blades if $e^{-2}=0.1353$ is

  1. $0.1353$

  2. $0.1804$

  3. $0.2706$

  4. $0.3606$


Correct Option: B
Explanation:

Here P.D parameter $\lambda = \cfrac{2}{100}\times 100=2$
Hence number of probability that 3 blade are defective is $=P(X=3)=\cfrac{e^{-2}(2)^3}{3!}=\cfrac{4}{3}e^{-2}=\cfrac{4}{3}\times .1353=.1804$

On the average a submarine on patrol sights $6$ enemy ships per hour. Assuming the number of ships sighted in a given length of time is a poisson variate, the probability of sighting $4$ ships in the next two hours is

  1. $\displaystyle \frac{e^{-12}12^{4}}{ 4!}$

  2. $\displaystyle \frac{e^{-4}12^{12}}{ 3!}$

  3. $\displaystyle \frac{e^{-6}12^{4}}{ 4!}$

  4. $\displaystyle \frac{e^{-3}12^{2}}{ 4!}$


Correct Option: A
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region(parameter)
x: The actual number of successes that occur in a specified region.
P(x; $ \mu $): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
the average a submarine on patrol sights 6 enemy ships per hour, so for 2 hours
Here, $ \mu =  6 \times 2 = 12 $
x = 4 ( ships)
$ P(4;12)=\dfrac { { e }^{ -12 }{12 }^{4 } }{ 4! }$

Patients arrive randomly and independently at a Doctor's room from 8 AM at an average rate of one in 5 minutes. The waiting room can accommodate 12 persons. The probability that the room will be full when the doctor arrives at 9AM is

  1. $\displaystyle \frac{{e}^{-12}(12)^{12}}{ 12!}$

  2. $\displaystyle \sum _{{x}=0}^{11}\frac{{e}^{-12}(12)^{{x}}}{ x!}$

  3. $1-\displaystyle \sum _{{x}=0}^{11}\frac{{e}^{-12}(12)^{{x}}}{ x!}$

  4. $1-\displaystyle \sum _{{x}=0}^{\infty }\frac{{e}^{-12}(12)^{{x}}}{ x!}$


Correct Option: C
Explanation:

Random Arrival process is a Poisson process
Given by
$P(k) = \dfrac{e^{-\lambda} \lambda^x}{x!}$
$given, \lambda = 1/5 min^{-1}= 12 s^{-1}$
Room is not full, if No.of patients $< 12$
Hence 
$P$(room is full) $= 1 - (P(1)+ . . . . +P(11))$
$=1-\displaystyle \sum _{{x}=0}^{11}\frac{{e}^{-12}(12)^{{x}}}{ x!}$

On an average, a submarine on patrol sights $6$ enemy ships per hour. Assuming the number of ships sighted in a given length of time is a Poisson variate, the probability of sighting at least two ships in the next $20$ minutes is

  1. $1-e^{-2}$

  2. $1-2e^{-2}$

  3. $1-3e^{-2}$

  4. $1-4e^{-2}$


Correct Option: C
Explanation:

The probability of sighting at least two ships
=1-(Probability of sighting atmost 1 ships)
$=1-e^{-\lambda}-\dfrac{\lambda^{1}e^{-\lambda}}{1!}$
Here $\lambda=2$
Hence 
$P=1-e^{-\lambda}-\dfrac{\lambda^{1}e^{-\lambda}}{1!}$
$=1-e^{-2}-2e^{-2}$
$=1-3e^{-2}$.

For a poisson distribution with parameter $\lambda = 0.25$, the value of the $2^{nd}$ moment about the origin is

  1. $0.25$

  2. $0.3125$

  3. $0.0625$

  4. $0.025$


Correct Option: B
Explanation:

Second moment about the origin is $\lambda +{ \lambda  }^{ 2 } = 0.25+{(0.25)}^{2} = 0.3125$
Therefore the correct option is $B$.

If $X$ is a Poisson's variate such that $P(X=1)=3P(X=2)$, then find the variance of $X$.

  1. $\cfrac 38$

  2. $\cfrac 13$

  3. $\cfrac 23$

  4. $\cfrac 54$


Correct Option: C
Explanation:
Fact:  Poisson distribution is $P(X=r)=\dfrac{e^{-\lambda}\lambda ^r}{r!}$

Now given $P(X=1)=3P(X=2)$

$\Rightarrow \dfrac{e^{-\lambda}\lambda}{1!}=3\cdot \dfrac{e^{-\lambda} \lambda^2}{2!}$

$\Rightarrow \lambda =\dfrac{2}{3}=$ Variance