Tag: de moivre’s theorem and its applications
Questions Related to de moivre’s theorem and its applications
The number of solutions of equation $z^{10}-z^{5}+1=0$ are
-
only two solution
-
No solution
-
only five solution
-
exactly 10
${ z }^{ 10 }-{ z }^{ 5 }+1=0$
Let ${ z }^{ 5 }=w$
$\Rightarrow { w }^{ 2 }-w+1=0$
$\Rightarrow w=\frac { 1\pm \sqrt { 3 } }{ 2 } =\cos { \frac { \Pi }{ 3 } } \pm \sin { \frac { \Pi }{ 3 } } =cis\left( \pm \frac { \Pi }{ 3 } \right) $
$\Rightarrow { z }^{ 5 }=cis\left( \pm \frac { \Pi }{ 3 } \right) $
Case 1:
${ z }^{ 5 }=cis\left( \frac { \Pi }{ 3 } \right) $
$\Rightarrow z={ \left( cis\left( \frac { \Pi }{ 3 } \right) \right) }^{ \frac { 1 }{ 5 } }=cis\left( \frac { 2k\Pi +\Pi }{ 15 } \right) \ $ ...{De Moivre's Theorem}
Where k=0,1,2,3,4.
Therefore number of solutions are 5.
Case 2:
${ z }^{ 5 }=cis\left( -\frac { \Pi }{ 3 } \right) $
$\Rightarrow z={ \left( cis\left( -\frac { \Pi }{ 3 } \right) \right) }^{ \frac { 1 }{ 5 } }=cis\left( \frac { 2k\Pi -\Pi }{ 15 } \right) $ ...{De Moivre's Theorem}
Where k=0,1,2,3,4.
Therefore number of solutions are 5.
From case 1 & case 2 total number of solutions of equation ${ z }^{ 10 }-{ z }^{ 5 }+1=0$ are 10.
Ans: D
If $\displaystyle z=1+\cos \frac{2\pi }{3}+i\sin \frac{2\pi }{3}$, then
-
$\displaystyle Re(z^{5})=\frac{\sqrt{3}}{2}$
-
$\displaystyle Re(z^{5})=\frac{1}{2}$
-
$\displaystyle Im(z^{5})=\frac{1}{2}$
-
$\displaystyle Im(z^{5})=\frac{\sqrt{3}}{2}$
$z=1+\cos { \frac { 2\pi }{ 3 } } +i\sin { \frac { 2\pi }{ 3 } } =2\cos ^{ 2 }{ \frac { \pi }{ 3 } } +2i\sin { \frac { \pi }{ 3 } \cos { \frac { \pi }{ 3 } } } $
$\displaystyle \Rightarrow z=2\cos { \frac { \pi }{ 3 } } \left( \cos { \frac { \pi }{ 3 } } +i\sin { \frac { \pi }{ 3 } } \right) =\cos { \frac { \pi }{ 3 } } +i\sin { \frac { \pi }{ 3 } } $
$\displaystyle \Rightarrow { z }^{ 5 }={ \left( \cos { \frac { \pi }{ 3 } } +i\sin { \frac { \pi }{ 3 } } \right) }^{ 5 }=\cos { \frac { 5\pi }{ 3 } } +i\sin { \frac { 5\pi }{ 3 } } $ ...{De Moivre's Theorem}
$\displaystyle \Rightarrow { z }^{ 5 }=\frac { 1-i\sqrt { 3 } }{ 2 } $
$\displaystyle \therefore \quad Re\left( { z }^{ 5 } \right) =\frac { 1 }{ 2 } \quad & \quad Im\left( { z }^{ 5 } \right) =\frac { -\sqrt { 3 } }{ 2 } $
Hence, option B is correct.
Construct an equation whose roots are $n^{th}$ powers of the roots of the equation $\displaystyle x^{2}-2x\cos \theta +1= 0.$
-
$\displaystyle x^{2}-2n\cos n\theta x+1= 0$
-
$\displaystyle x^{2}-2n\cos \theta x+1= 0$
-
$\displaystyle x^{2}-2\cos n\theta x+1= 0$
-
$\displaystyle x^{2}-2\cos ^{n}\theta x+1= 0$
We know, $\displaystyle \alpha = \cos \theta +i\sin \theta , \beta = \cos \theta -i\sin \theta $
$\displaystyle \alpha ^{n}= \cos n\theta +i\sin n\theta ,$
$\displaystyle \beta ^{n}= \cos n\theta -i\sin n\theta $
$\displaystyle S= 2\cos n\theta , P= 1 \therefore x^{2}-Sx+P= 0$
or $\displaystyle x^{2}-2\cos n\theta x+1= 0$ is the required equation.
Ans: C
If $z = \left(\displaystyle\frac{\sqrt3}{2} + \displaystyle\frac{i}{2}\right)^{2009}+\left(\displaystyle\frac{\sqrt3}{2} - \displaystyle\frac{i}{2}\right)^{2009}$, then
-
$Im(z) = 0$
-
$Re(z) > 0$
-
$Im(z) > 0$
-
$Re(z) < 0, Im(z) > 0$
As we know that,
$\dfrac { \sqrt { 3 } }{ 2 } +\dfrac { i }{ 2 } =\cos { \dfrac { \pi }{ 6 } } +i\sin { \dfrac { \pi }{ 6 } } $
and $\dfrac { \sqrt { 3 } }{ 2 } -\dfrac { i }{ 2 } =\cos { \dfrac { \pi }{ 6 } } -i\sin { \dfrac { \pi }{ 6 } } $
$z=\left( \dfrac { \sqrt { 3 } }{ 2 } +\dfrac { i }{ 2 } \right) ^{ 2009 }+\left( \dfrac { \sqrt { 3 } }{ 2 } -\dfrac { i }{ 2 } \right) ^{ 2009 }$
$\Rightarrow z=\left( \cos { \dfrac { \pi }{ 6 } } +i\sin { \dfrac { \pi }{ 6 } } \right) ^{ 2009 }+\left( \cos { \dfrac { \pi }{ 6 } } -i\sin { \dfrac { \pi }{ 6 } } \right) ^{ 2009 }$ ......{ De Moivre's Theorem}
$\Rightarrow z=\cos { \dfrac { 2009\pi }{ 6 } } +i\sin { \dfrac { 2009\pi }{ 6 } } +\cos { \dfrac { 2009\pi }{ 6 } } -i\sin { \dfrac { 2009\pi }{ 6 } } $
$\Rightarrow z=2\cos { \dfrac { 2009\pi }{ 6 } } $
Therefore, $Im(z)=0$
Ans: B
The roots of $\displaystyle \left ( -64a^{4} \right )^{\tfrac14}$ are
-
$\displaystyle \pm 2a\left ( 1\pm i \right ).$
-
$\displaystyle \pm a\left ( 1\pm i \right ).$
-
$\displaystyle \pm 2a\left ( 1\pm 2i \right ).$
-
$\displaystyle \pm a\left ( 1\pm 2i \right ).$
The value of $(iz+z^5+z^8)$ when $z=\dfrac{\sqrt{3}+i}{2}$ is?
-
$0$
-
$-1$
-
$\dfrac{-\sqrt{3}+i}{2}$
-
$z$
$z=\dfrac{\sqrt{3}+i}{2}=\cos \dfrac{\pi}{6}+i\sin\dfrac{\pi}{6}=cis\dfrac{\pi}{6}$
The value of $\displaystyle \left ( \sin \frac{\pi }{8}+i\cos \frac{\pi }{8} \right )^{8}$
-
-1
-
1
-
0
-
None of these
$z={ \left( \sin { \frac { \pi }{ 8 } +i } \cos { \frac { \pi }{ 8 } } \right) }^{ 8 }={ \left[ i\left( \cos { \frac { \pi }{ 8 } -i\sin { \frac { \pi }{ 8 } } } \right) \right] }]^8$
...{$\because \quad { i }^{ 8 }=1$}
$\Rightarrow z=\cos { \pi -i\sin { \pi } } =-1$ ...{De Moivre's Theorem}
Hence, option 'A' is correct.
If $z=\cos 2\theta +i\sin 2\theta $ then which is correct
-
$\displaystyle \sum _{r=0}^{n}C _{r}\cos2r\theta =2^{n} \cos ^{n}\theta \cos n\theta $
-
$\displaystyle \sum _{r=1}^{n}C _{r}\cos2r\theta =2^{n} \sin ^{n}\theta \cos n\theta $
-
$\sum _{ r=0 }^{ n } C _{ r }\sin 2r\theta =2^{ n }\cos ^{ n } \theta \sin n\theta $
-
$\displaystyle \sum _{r=0}^{n}C _{r}\sin2r\theta =2^{n} \sin ^{n}\theta \sin n\theta $
By Binomial Theorem
${ \left( 1+z \right) }^{ n }={ C } _{ 0 }+{ C } _{ 1 }z+{ C } _{ 2 }{ z }^{ 2 }+{ C } _{ 3 }{ z }^{ \ 3 }+....+{ C } _{ n }{ z }^{ n }=\sum _{ r=0 }^{ n }{ { C } _{ r }{ z }^{ r } } $ ...(1)
Substituting $z=\cos { 2\theta } +i\sin { 2\theta } $ in eq. (1), we get
${ \left( 1+\cos { 2\theta } +i\sin { 2\theta } \right) }^{ n }=\sum _{ r=0 }^{ n }{ { C } _{ r }\left( \cos { 2\theta } +i\sin { 2\theta } \right) ^{ r } } $
$\Rightarrow \sum _{ r=0 }^{ n }{ { C } _{ r }\left( \cos { 2r\theta } +i\sin { 2r\theta } \right) }$ ...{De Moivre's Theorem}
$\Rightarrow { \left[ 2\cos { \theta } \left( \cos { \theta } +i\sin { \theta } \right) \right] }^{ n }=\sum _{ r=0 }^{ n }{ { C } _{ r }\cos { 2r\theta } } +i\sum _{ r=0 }^{ n }{ { C } _{ r }\sin { 2r\theta } } $
$\Rightarrow \sum _{ r=0 }^{ n }{ { C } _{ r }\cos { 2r\theta } } +i\sum _{ r=0 }^{ n }{ { C } _{ r }\sin { 2r\theta } } ={ 2 }^{ n }\cos ^{ n }{ \theta } { \left( \cos { n\theta } +i\sin { n\theta } \right) }$ ...{De Moivre's Theorem}
$\Rightarrow \sum _{ r=0 }^{ n }{ { C } _{ r }\cos { 2r\theta } } +i\left( \sum _{ r=0 }^{ n }{ { C } _{ r }\sin { 2r\theta } } \right) ={ 2 }^{ n }\cos ^{ n }{ \theta } \cos { n\theta } +i\left( { 2 }^{ n }\cos ^{ n }{ \theta } \sin { n\theta } \right) $
On comparing real and Imaginary parts, we get
$\sum _{ r=0 }^{ n }{ { C } _{ r }\cos { 2r\theta } } ={ 2 }^{ n }\cos ^{ n }{ \theta } \cos { n\theta } \quad & \quad \sum _{ r=0 }^{ n }{ { C } _{ r }\sin { 2r\theta } } ={ 2 }^{ n }\cos ^{ n }{ \theta } \sin { n\theta } $
Hence, option 'A' and 'C' are correct.
Put in the form A +iB
-
$\displaystyle\cos 47\theta +i\sin47\theta.$
-
$\displaystyle\cos 47\theta -i\sin47\theta.$
-
$\displaystyle\cos 41\theta +i\sin41\theta.$
-
$\displaystyle\cos 41\theta -i\sin41\theta.$
Using De-Moivre's Theorem, the given expression
$\displaystyle = \frac{\left ( \cos \theta -i\sin \theta \right )^{14}\left ( \cos \theta +i\sin \theta \right )^{-15}}{\left ( \cos \theta +i\sin \theta \right )^{48}\left ( \cos \theta +i\sin \theta \right )^{-30}}$
$\displaystyle=\frac{\left ( e^{i\theta } \right )^{-29}}{\left ( e^{i\theta } \right )^{18}}=\left ( e^{i\theta } \right )^{-47}$
$\displaystyle=\left ( \cos \theta +i\sin \theta \right )-^{47}=\cos 47\theta -\sin47\theta.$
Ans: B
If $z = \left(\displaystyle\frac{\sqrt3}{2}+\displaystyle\frac{i}{2}\right)^5 + \left(\displaystyle\frac{\sqrt3}{2}-\displaystyle\frac{i}{2}\right)^5,$ then
-
$Re(z) = 0$
-
$Im(z) = 0$
-
$Re(z) > 0, \space Im(z) > 0$
-
$Re(z) > 0, \space Im(z) < 0$
As we know that,
$\dfrac { \sqrt { 3 } }{ 2 } +\dfrac { i }{ 2 } =\cos { \dfrac { \pi }{ 6 } } +i\sin { \dfrac { \pi }{ 6 } } $
and $\dfrac { \sqrt { 3 } }{ 2 } -\dfrac { i }{ 2 } =\cos { \dfrac { \pi }{ 6 } } -i\sin { \dfrac { \pi }{ 6 } } $
$z=\left( \dfrac { \sqrt { 3 } }{ 2 } +\dfrac { i }{ 2 } \right) ^{ 5 }+\left( \dfrac { \sqrt { 3 } }{ 2 } -\dfrac { i }{ 2 } \right) ^{ 5 }$
$\Rightarrow z=\left( \cos { \dfrac { \pi }{ 6 } } +i\sin { \dfrac { \pi }{ 6 } } \right) ^{ 5 }+\left( \cos { \dfrac { \pi }{ 6 } } -i\sin { \dfrac { \pi }{ 6 } } \right) ^{ 5 }$ ......{ De Moivre's Theorem}
$\Rightarrow z=\cos { \dfrac { 5\pi }{ 6 } } +i\sin { \dfrac { 5\pi }{ 6 } } +\cos { \dfrac { 5\pi }{ 6 } } -i\sin { \dfrac { 5\pi }{ 6 } } $
$\Rightarrow z=-\dfrac { \sqrt { 3 } }{ 2 } $
Therefore, $Im(z)=0$
Ans: B
- ← Previous
- 1
- 2
- 3
- 4
- Next →