Tag: de moivre’s theorem and its applications
Questions Related to de moivre’s theorem and its applications
If $z + z^{-1} = 1$, then $z^{100} + z^{-100}$ is equal to
The modulus and amplitude of the complex number $[e^{3-i \tfrac{\pi}{4}}]^3$ are respectively.
If $\displaystyle\alpha =\cos { \left( \frac { 8\pi }{ 11 } \right) } +i\sin { \left( \frac { 8\pi }{ 11 } \right) } ,$ then $Re\left( \alpha +{ \alpha }^{ 2 }+{ \alpha }^{ 3 }+{ \alpha }^{ 4 }+{ \alpha }^{ 5 } \right) $ is equal to
If $x = \cos \theta + i \sin \theta$ the value of $x^n + \dfrac{1}{x^n}$ is
If $\alpha, \beta$ are the roots of the equation $u^2-2u+2=0$ and if $\cot\theta=x+1$, then $[(x+\alpha)^n-(x+\beta)^m]/[\alpha-\beta]$ is equal to
If $z _{1}$ and $\bar {z} _{1}$ represent adjacent of a regular polygon of $n$ sides with centre at the origin & if $\dfrac{Im\ z _{1}}{Re\ z _{1}}=\sqrt{2}-1$ then the value of $n$ is equal to:
What is the real part of $(\sin x + i \cos x)^{3}$ where $i = \sqrt {-1}$?
If $(\cos \theta + i \sin \theta)(\cos 2 \theta
+ i \sin 2 \theta) ... (\cos n \theta + i \sin n \theta) = 1$, then the value of $\theta$ is , $m\in N$
Statement 1: The product of all values of $(cos\alpha+i sin \alpha)^{\frac {3}{5}}$ is $cosn 3\alpha+i sin 3\alpha$.
Statement 2: The product of fifth roots of unity is 1.
If $z _1$ and $z _2$ are the complex roots of the equation $(x-3)^3+1 = 0$, then $z _1 + z _2$ equals to
- ← Previous
- 1
- 2
- 3
- 4
- Next →