Tag: understanding geometric progressions
Questions Related to understanding geometric progressions
The sum of infinity of $\frac{1}{7} + \frac{2}{7^2} + \frac{1}{7^3} + \frac{2}{7^4} + ......$ is:
The limit of the sum of an infinite number of terms in a geometric progression is $a/(1 - r)$ where a denotes the first term and $-1 <r<1$ denotes the common ratio. The limit of the sum of their squares is:
If $S=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+....\infty$.
then, the sum of the given series is $2$.
Given a sequence of $4$ members, first three of which are in G.P. and the last three are in A.P. with common difference six. If first and last terms of this sequence are equal, then the last term is:
$n$ is an integer. The largest integer $m$, such that ${n^m} + 1$ divides $1 + n + {n^2} + .....{n^{127}},$ is
Tangent at a point ${P _1}$ (other than (0, 0) on the curve $y = {x^3}$ meets the curve again at ${P _2}$. The tangent at ${P _2}$ meets the curve again at ${P _3}$ and so on. Show that the abscissae of ${P _1},{P _2},..........,{P _n}$ form a G.P. Also find the ratio $\left[ {area\,\left( {\Delta {P _1}.{P _2}.{P _3}} \right)/area\,\left( {\Delta {P _2}{P _3}{P _4}} \right)} \right].$
If $a, b, c$ are in G.P., then
Consider an infinite $G.P$. with first term $a $ and common ratio $r$, its sum is $4$ and the second term is $\dfrac {3}{4}$, then?
The first term of an infinite geometric progression is x and its sum is $5$. then
The first three of four given numbers are in G.P. and last three are in A.P. whose common difference is $6$. If the first and last numbers are same, then first will be?