Tag: understanding geometric progressions

Questions Related to understanding geometric progressions

Say true or false.
The total savings (in $Rs.$) after every month for $10$ months when $Rs. 50$ are saved each month are $50, 150, 200, 250, 300, 350, 400, 450, 500$ represent G.P.

  1. True

  2. False


Correct Option: B
Explanation:

Ratio of second term to first term is $ \frac {150}{50} = 3$

Ratio of third term to second term is  $ \frac {200}{150} = 1.33$

Thus, the ratio is not matching. 

Hence, it is not a GP.

Say true or false.
Given series:
$15, 30, 60, 120, 240$ is in G.P.

  1. True

  2. False


Correct Option: A
Explanation:

Given series is $15,30,60,120,240$
Ratio between first two terms $=$ $\dfrac{30}{15}$ $=2$
Ratio between second and third terms $=$ $\dfrac{60}{30}$ $=2$
Ratio between third and fourth terms $=$ $\dfrac{120}{60}$ $=2$
Ratio between fourth and fifth terms $=$ $\dfrac{240}{120}$ $=2$
Since, the ratio between the terms is the same. The series forms a G.P.

Which of the following is not a G.P.?

  1. $2, 4, 6, 8....$

  2. $5, 25, 125, 625....$

  3. $1.5, 3.0, 6.0, 12.0....$

  4. $8, 16, 24, 32, ....$


Correct Option: A,D
Explanation:

In series $2,4,6,8,....$ difference is same i.e. $2$

In $8,16,24,32,......$ difference again is same $8$
$\therefore$ both the series (a) and (b) are in AP as the difference between their consecutive terms is the same.

For the infinite series $1-\cfrac { 1 }{ 2 } -\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 8 } -\cfrac { 1 }{ 16 } -\cfrac { 1 }{ 32 } +\cfrac { 1 }{ 54 } -\cfrac { 1 }{ 128 } -....\quad $ let $S$ be the (limiting) sum. Then $S$ equals

  1. $0$

  2. $\cfrac { 2 }{ 7 } $

  3. $\cfrac { 6 }{ 7 } $

  4. $\cfrac { 9 }{ 32 } $

  5. $\cfrac { 27 }{ 32 } $


Correct Option: B
Explanation:

Combine the terms in threes, to get the geometric series
$\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 32 } +\cfrac { 1 }{ 256 } +....;\quad \quad S=\cfrac { \cfrac { 1 }{ 4 }  }{ 1-\cfrac { 1 }{ 8 }  } =\cfrac { 2 }{ 7 } $ or
rearrange the terms into three series:
$1+\cfrac { 1 }{ 8 } +\cfrac { 1 }{ 64 } +...\quad -\cfrac { 1 }{ 2 } -\cfrac { 1 }{ 16 } -\cfrac { 1 }{ 128 } -....,\quad -\cfrac { 1 }{ 4 } -\cfrac { 1 }{ 32 } -\cfrac { 1 }{ 256 } -....\quad $
${ S } _{ 1 }=\cfrac { 1 }{ 1-\cfrac { 1 }{ 8 }  } =\cfrac { 8 }{ 7 } ;{ S } _{ 2 }=\cfrac { -\cfrac { 1 }{ 2 }  }{ 1-\cfrac { 1 }{ 8 }  } =-\cfrac { 4 }{ 7 } ;{ S } _{ 3}=\cfrac { -\cfrac { 1 }{ 4 }  }{ 1-\cfrac { 1 }{ 8 }  } =-\cfrac { 2 }{ 7 } ;\quad \therefore S=\cfrac { 2 }{ 7 } $

What is the geometric mean of $6$ and $24$ ?

  1. $10$

  2. $12$

  3. $14$

  4. $16$


Correct Option: B
Explanation:
Assume $a, b, c$ in G.P.
then $\dfrac{b}{a}=\dfrac{c}{b}$

$\Rightarrow b^2=ac$

$\Rightarrow b=\sqrt{ac}$

so, $G.M=\sqrt{ac}$

$=\sqrt{6\times 24}$

$G.M =12$

$a^x=b, b^y=c, c^z=a$
Find the value of x, y, z.

  1. $1$

  2. $Not$  $valid$

  3. $-1$

  4. $0$


Correct Option: A
Explanation:

${ a }^{ x }=b\ { b }^{ y }=c=>{ a }^{ xy }=c\ { c }^{ z }=a\ { c }^{ z }=a=>{ b }^{ yz }=a\ \left( { a }^{ x } \right) ^{ yz }=a\ { a }^{ xyz }=a\ xyz=1$

If there exists a geometric progression containing 27, 8 and 12 as three of its terms (not necessarily consecutive) then no. of progressions possible are

  1. $1$

  2. $2$

  3. infinite

  4. None of these


Correct Option: C
Explanation:
$8, 12, 29$

Let the first term be $8$

$\therefore a = 8$    ...(i)

Let the $p^{th}$ ther be $12$

$\therefore ar^{p-1} = 12$     ...(ii)

and $q^{th}$ term be $27$

$\therefore ar^{q-1} = 27$    ...(iii)

(i) / (ii)

$\dfrac{a}{ar^{p-1}} = \dfrac{8}{12}$

$\Rightarrow r^{p-1} = \dfrac{3}{2} = 1.5$      ...(iv)

(iii) / (i)

$r^{q-1} = \dfrac{27}{8} = \left(\dfrac{3}{2}\right)^3$

$r^{q-1} = (1.5)^3$    ...(v)

(v) / (iv)

$\Rightarrow \dfrac{r^{q-1}}{r^{p-1}} = \dfrac{(1.5)^3}{1.5}$

$\Rightarrow r^{q-1-p+1} = (1.5)^2$

$\Rightarrow r^{q-p} = (1.5)^2$

              $= (r^{p-1})^2$     ...from (iv)

$\Rightarrow r^{q-p} = r^{2p-2}$

$\therefore q-p = 2p-2$

$\Rightarrow \boxed{q=3p-2}$

for every distinct value of '$p$' there will be a district integer value of '$q$'

$\therefore $ Infinite no. of progression are possible.

option $C$