Tag: three dimensional geometry - ii
Questions Related to three dimensional geometry - ii
$L: \displaystyle \frac{x\, +\, 1}{2}= \frac{y\, +\, 1}{3}= \frac{z\, +\, 1}{4}$
$\pi _{1}:\, x\, +\, 2y\, +\, 3z= 14,\, \pi _{2}:\, 2x\, -\, y\, +\, 3z= 27$
If the line $L$ meets the plane $\pi _{1}$ in the point $P$, and the coordinates of $P$ are $\left ( \alpha ,\, \beta ,\, \gamma \right )$, then $\alpha ^{2}\, +\, \beta ^{2}\, +\, \gamma ^{2}$ is equal to
A line with positive direction cosines passes through the point $\displaystyle P\left ( 2,-1,2 \right )$ and makes equal angles with the coordinates axis. The line meet the plane $\displaystyle 2x+y+z=9$ at ponit $Q$.
The length of the line segment $PQ$ equals.
Find the point where the line of intersection of the planes $ x - 2y + z = 1$ and $x + 2y - 2z = 5$, intersects the plane $2x + 2y + z + 6 = 0$
The line passing through the points $(5, 1, a)$ and $(3, b, 1)$ crosses the $yz$-plane at the point $\left (0,\dfrac{17}{2},\dfrac{-13}{2}\right)$. Then,