Tag: three dimensional geometry - ii
Questions Related to three dimensional geometry - ii
If $\displaystyle \theta$ is the angle between the line
$\vec r=2i+j-k+\left ( i+j+k \right )t$ and the plane
$\displaystyle \vec r\cdot \left ( 3i-4j+5k \right )=q$, then
The projection of line $\displaystyle\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane 'P' is $\displaystyle\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. If the plane P passes through $(k, -2, 0)$, then k is greater than.
Statement-I: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.
Statement-2: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$.
If the points $(1,2,3)$ and $(2,-1,0)$ lie on the opposite sides of the plane $2x+3y-2z=k$, then
If the planes $x - cy - bz = 0,cx - y + az = 0\,$ and $bx + ay - z = 0$ pass through a stright line,then the value of ${a^2} + {b^2} + {c^2} + 2abc\,$ is:
The point where the line through $A=(3, -2, 7)$ and $B= (13, 3, -8)$ meets the xy-plane
The ratio in which the plane $4x+5y-3z=8$ divides the line joining the points $(-2,1,5)$ and $(3,3,2)$ is
Let the equations of a line and a plane be $\dfrac {x+3}{2}=\dfrac {y-4}{3}=\dfrac {z+5}{2}$ and $4x-2y-z=1$, respectively, then
The ratio in which the plane $r.\left( \hat { i } -2\hat { j } +2\hat { k } \right) =17$ divides the line joining the points $-2\hat { i } +4\hat { j } +7\hat { k } $ and $3\hat { i } -5\hat { j } +8\hat { k } $ is:
Line $\vec r=\vec a+\lambda \vec b$ will not meet the plane $\vec r\cdot \vec n=q$, if-