Tag: three dimensional geometry - ii

Questions Related to three dimensional geometry - ii

If $\displaystyle \theta$ is the angle between the line 
$\vec r=2i+j-k+\left ( i+j+k \right )t$ and the plane
$\displaystyle \vec r\cdot \left ( 3i-4j+5k \right )=q$, then

  1. $\displaystyle \cos \theta =\frac{2\sqrt{6}}{15}$

  2. $\displaystyle \sin \theta =\frac{2\sqrt{6}}{15}$

  3. $\displaystyle \sin \theta =-\frac{11\sqrt{7}}{70}$

  4. $\displaystyle \cos \theta =-\frac{11\sqrt{7}}{70}$


Correct Option: B
Explanation:

 $\theta$ is angle b/w $\xrightarrow [\gamma]{} =2\hat {  i}+j+k+(i+j+k)t$ and $\rightarrow.(3\hat { i }-4\hat { j }+5k)=q$

Angle b/w line and plane is given by 

$\sin\theta =\dfrac{4 _1a _2+b _1b _2+c _1c _2}{\sqrt{a _1^2+b _1^2+c _1^2}\sqrt{a _2^2+b _2^2+c _2^2}}$   

Where $(a _1,b _1,c _1)$ and $(a _2,b _2,c _2)$ are direction ratios of line and plane Respectively so here 

$a _1,b _1,c _1)=(1,1,1)$ and $(a _2,b _2,c _2)=(3,-4,5)$

So $\sin \theta=\dfrac{3-4+5}{\sqrt{1+1+1}\sqrt{9+16+25}}$

$\dfrac{4}{\sqrt{3}\sqrt{50}}=\dfrac{4}{\sqrt{3}5\sqrt{2}}=\dfrac{4}{\sqrt{6.5}}\times \dfrac{\sqrt{6}}{\sqrt{6}}=\dfrac{2\sqrt{6}}{5.3}=\dfrac{2\sqrt{6}}{15}$

so here $\sin\theta =\dfrac{2\sqrt{6}}{15} \Rightarrow \theta =\sin\dfrac{2\sqrt{6}}{15}$

The projection of line $\displaystyle\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane 'P' is $\displaystyle\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. If the plane P passes through $(k, -2, 0)$, then k is greater than.

  1. $2$

  2. $3$

  3. $5$

  4. $4$


Correct Option: A

Statement-I: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.
Statement-2: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$.

  1. (1 ) StatementI is true. Statement-1 is true: Statement--2 is a correct explanation for Statement-1.

  2. (2) StatementI is true, Statement-2 is true: Statement-9 is not a correct explanation for statement-1.

  3. (3) Statement--I is true, Statement-2 is false.

  4. (4) StatementI is false. Statement-2 is true.


Correct Option: A
Explanation:

Mid-point of AB=$\begin{array}{l} = \left( {\dfrac{{3 + 1}}{2},\dfrac{{1 + 3}}{2},\dfrac{{4 + 6}}{2}} \right)\ = (2,2,5)\end{array}$
lies on the plane as it satisfies the equation of the plane
and DR s of AB $ = (2, - 2,2)$
DR s of normal to the plane $= (1, - 1,1)$
AB is the perpendicular bisector.
Hence, A is the image of 2 
 

If the points $(1,2,3)$ and $(2,-1,0)$ lie on the opposite sides of the plane $2x+3y-2z=k$, then

  1. $k< 1$

  2. $k> 2$

  3. $k< 1$ or $k> 2$

  4. $1< k< 2$


Correct Option: D
Explanation:

 Given plane equation is $2{x}+3{y}-2{z}-k=0$

$(1,2,3)$ and $(2,-1,0)$ lies on the opposite sides of the plane
$(2(1)+3(2)-2(3)-k)(2(2)+3(-1)-2(0)-k)<0$
$(2-k)(1-k)<0\implies (k-1)(k-2)<0$
$\implies 1<k<2$

If the planes $x - cy - bz = 0,cx - y + az = 0\,$ and $bx + ay - z = 0$ pass through a stright line,then the value of ${a^2} + {b^2} + {c^2} + 2abc\,$ is:

  1. $1$

  2. $2$

  3. $3$

  4. none of these


Correct Option: A
Explanation:
If the planes $(x - cy - bz = 0), (cx - y + az = 0)$ and $(bx + ay - z = 0)$ are in same line.
$\therefore$ They must be collinear.
$\begin{vmatrix}1 & -c & -b\\ c & -1 & a\\ b & a & -1\end{vmatrix} = 0$
$\Rightarrow 1(1 - a^2) + c(-c - ab) -b(ac + b) = 0$
$\Rightarrow 1 - a^2 - c^2 - abc - abc - b^2 = 0$
$\therefore a^2 + b^2 + c^2 + 2abc = 1$
Option A is correct

The point where the line through $A=(3, -2, 7)$ and $B= (13, 3, -8)$ meets the xy-plane

  1. $(\cfrac { 23 }{ 3 } ,\cfrac { 1 }{ 3 } ,0)$

  2. $(\cfrac { 23 }{ 6 } ,\cfrac { 1 }{ 6 } ,0)$

  3. $(\cfrac { 23 }{ 3 } ,\cfrac { 1 }{ 3 } , 1)$

  4. $(\cfrac { 23 }{ 3 } ,\cfrac { 1 }{ 3 } , 3)$


Correct Option: A
Explanation:

Equation of line through $A(3,-2,7)$ and $B(13,3,-8)$ is:

$\cfrac { x-3 }{ 10 } =\cfrac { y+2 }{ 5 } =\cfrac { z-7 }{ -15 }$
When the line meets $x-y$ plane $\Rightarrow z=0$
$\therefore \cfrac { x-3 }{ 10 } =\cfrac { y+2 }{ 5 } =\cfrac { 7 }{ 15 } \quad \quad \Rightarrow x=\cfrac { 23 }{ 3 } ,y=\cfrac { 1 }{ 3 } \quad \quad \Rightarrow (x,y,z)=(\cfrac { 23 }{ 3 } ,\cfrac { 1 }{ 3 } ,0)$

The ratio in which the plane $4x+5y-3z=8$ divides the line joining the points $(-2,1,5)$ and $(3,3,2)$ is

  1. $2 : 1$

  2. $1 : 2$

  3. $-2 : 1$

  4. $3 : 2$


Correct Option: A
Explanation:

We know that the ratio in which the plane $ax+by+cz+d=0$ divides the line segment joining (${x _1},{y _1},{z _1}$) and (${x _2},{y _2},{z _2}$) is

$\begin{array}{l} \dfrac { { -\left( { a{ x _{ 1 } }+b{ y _{ 1 } }+c{ z _{ 1 } }+d } \right)  } }{ { a{ x _{ 2 } }+b{ y _{ 2 } }+c{ z _{ 2 } }+d } }  \ a=4;b=5;c=-3;d=-8;{ x _{ 1 } }=-2;{ y _{ 1 } }=1;{ z _{ 1 } }=5;{ x _{ 2 } }=3;{ y _{ 2 } }=3;{ z _{ 2 } }=2 \ so,\, the\, required\, ratio=\dfrac { { -\left( { 4\left( { -2 } \right) +5\left( 1 \right) -3\left( 5 \right) -8 } \right)  } }{ { 4\left( 3 \right) +5\left( 3 \right) -3\left( 2 \right) -8 } }  \ =\dfrac { { -\left( { -8+5-15-8 } \right)  } }{ { 12+15-6-8 } }  \ =\dfrac { { 26 } }{ { 13 } }  \ =\dfrac { 2 }{ 1 } \ or\ 2:1 \end{array}$

Let the equations of a line and a plane be $\dfrac {x+3}{2}=\dfrac {y-4}{3}=\dfrac {z+5}{2}$ and $4x-2y-z=1$, respectively, then

  1. the line is parallel to the plane.

  2. the line is perpendicular to the plane.

  3. the line lies in the plane.

  4. none of these.


Correct Option: A
Explanation:

Direction ratios of the line is $2i+3j+2k$
and normal of plane is along $4i-2j-k$
Now, $(2i+3j+2k).(4i-2j-k)=8-6-2=0$
Therefore, line is parallel to plane

Ans: A

The ratio in which the plane $r.\left( \hat { i } -2\hat { j } +2\hat { k }  \right) =17$ divides the line joining the points $-2\hat { i } +4\hat { j } +7\hat { k } $ and $3\hat { i } -5\hat { j } +8\hat { k } $ is:

  1. $3:5$

  2. $1:10$

  3. $3:10$

  4. $1:5$


Correct Option: C
Explanation:

Let the plane $r.(i-2j+3k)=17$ divide the line joining the points. 

$-2i+4j+7k$ and $2i-5j+8k$ in the ratio $t:1$ at the point $P.$

$\therefore P$ is $\displaystyle \dfrac { 3t-1 }{ t+1 } i+\dfrac { -5t+4 }{ t+1 } j+\dfrac { 8t+7 }{ t+1 } k.$

This lies on the given plane, 

$\displaystyle \therefore \dfrac { 3t-2 }{ t+1 } .1+\dfrac { -5t+4 }{ t+1 } \left( 2 \right) +\dfrac { 8t+7 }{ t+1 } \left( 3 \right) =17$

$\Rightarrow 3t-2+10t-8+24t+21=17t+17$

$\displaystyle \therefore 20t=17-21+10=6\Rightarrow =\dfrac { 6 }{ 20 } =\dfrac { 3 }{ 10 } $

$\therefore$ required ratio is $3:10$.

Line $\vec r=\vec a+\lambda \vec b$ will not meet the plane $\vec r\cdot \vec n=q$, if-

  1. $\vec b\cdot \vec n=0, \vec a\cdot \vec n=q$

  2. $\vec b\cdot \vec n\neq 0, \vec a\cdot \vec n\neq q$

  3. $\vec b\cdot \vec n=0, \vec a\cdot \vec n\neq q$

  4. $\vec b\cdot \vec n\neq 0, \vec a\cdot \vec n=q$


Correct Option: C
Explanation:

Given line is $\overrightarrow { r } =\overrightarrow { a } +\lambda \overrightarrow { b } $

Substitute it in plane equation $\overrightarrow { r } .\overrightarrow { n } =q$
We get $(\overrightarrow { a } +\lambda \overrightarrow { b } ).\overrightarrow { n } =q$
$\Rightarrow \overrightarrow { a } .\overrightarrow { n } +\lambda (\overrightarrow { b } .\overrightarrow { n } )=q$
If $\overrightarrow { b } .\overrightarrow { n } =0$ and $\overrightarrow { a } .\overrightarrow { n } \neq q$ then the line will not meet the plane
Therefore the correct option is $C$