Tag: three dimensional geometry - ii

Questions Related to three dimensional geometry - ii

If $\theta$ denotes the acute angle between the line $\bar{r} = (\bar{i} + 2\bar{j} - \bar{k}) + \lambda  (\bar{i} - \bar{j} + \bar{k})$ and the plane $\bar{r} = (2\bar{i} - \bar{j} + \bar{k}) = 4$, then $\sin \theta + \sqrt 2 \cos \theta$

  1. $\dfrac{1}{\sqrt 2}$

  2. $1$

  3. $\sqrt 2$

  4. $1 + \sqrt 2$


Correct Option: A

Let $\vec {AB}=\hat {i}-\hat {j}+\hat {k}$ be rotated about $A$ along the plane $3x-y-2z=5$ by an angle $\cos^{-1}\dfrac {\sqrt {2}}{3}$ so that the point $B$ reaches the point $C$, then the vector representing $AC$ may be

  1. $\dfrac {\sqrt {3}(-2\hat {j}+\hat {k})}{\sqrt {5}}$

  2. $\dfrac {\hat {i}-\hat {j}+2\hat {k}}{\sqrt {2}}$

  3. $\dfrac {\sqrt {3}(\hat {i}+3\hat {j})}{\sqrt {10}}$

  4. $\dfrac {\hat {i}-7\hat {j}+2\hat {k}}{3\sqrt {2}}$


Correct Option: A

Gives the line $\displaystyle L:\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-3 }{ -1 } $ and the plane $\pi :x-2y=0$. Of the following assertions, the only one that is always true is:

  1. $L$ is $\bot$ to $\pi$

  2. $L$ lies in $\pi$

  3. $L$ is parallel to $\pi$

  4. none of these


Correct Option: B
Explanation:

Since $3\left( 1 \right) +2\left( -2 \right) +\left( -1 \right) \left( -1 \right) =3-4+1=0$

$\therefore$ given line is $\bot$ to the normal to the plane i.e. given line is parallel to the given plane.
Also, $(1,-1,3)$ lies on the plane $x-2y-z=0$
$1-2\left( -1 \right) -3=0\Rightarrow 1+2-3=0$
which is true
$\therefore L$ lies in plane $\pi$

Consider a plane $x + y - z = 1$ and the point $A(1, 2, -3)$. A line $L$ has the equation $x = 1 + 3r$, $y = 2 - r$, $z = 3 + 4r$

The coordinate of a point $B$ of line $L$, such that $AB$ is parallel to the plane, is

  1. $(10, -1, 15)$

  2. $(-5, 4, -5)$

  3. $(4, 1, 7)$

  4. $(-8, 5, -9)$


Correct Option: D
Explanation:

Let $\vec { OB } =\left( 1+3r \right)\hat i+\left( 2-r \right)\hat j+\left( 3+4r \right)\hat k$
$\vec { AB } =\vec { OB } -\vec { OA } =\left( 1+3r \right)\hat i+\left( 2-r \right)\hat j+\left( 3+4r \right)\hat k-\hat i-2\hat j+3\hat k=3r\hat i-r\hat j+\left( 6+4r \right)\hat k$
Since, $\vec { AB }$ is parallel to $x+y-z=1$
Therefore, $\vec { AB } .\left(\hat i+\hat j-\hat k \right) =0$
$\Rightarrow \left( 3r\hat i-r\hat j+\left( 6+4r \right)\hat k \right) .\left(\hat i+\hat j-\hat k \right)=0 $
$\Rightarrow 3r-r-6-4r=0$
$\Rightarrow r=-3$
Therefore, $\vec { OB } =-8i+5j-9k$

Ans: D

If the angle between the line $x=\dfrac{y-1}{2}=\dfrac{z-3}{\lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \left( \sqrt { 5/14 }  \right)  } $ then $\lambda$=

  1. $\dfrac{3}{2}$

  2. $\dfrac{5}{3}$

  3. $\dfrac{2}{3}$

  4. $\dfrac{2}{5}$


Correct Option: A

Consider plane containing line $\dfrac{x+1}{-3} = \dfrac{y-3}{z} = \dfrac{z+2}{-1}$ and passing through the point $(1, -1, 0)$. The angle made by the plane with x-axis is

  1. $tan^{-1} \sqrt{2}$

  2. $tan^{-1} \sqrt{2}$

  3. $\dfrac{\pi}{6}$

  4. none of these


Correct Option: A

Consider plane containing line $\dfrac{x+1}{-3} = \dfrac{y-3}{2} = \dfrac{z+2}{-1}$ and passing through the point $(1, -1, 0)$ . The angle made by the plane with x-axis is 

  1. $tan^{-1} \sqrt{2}$

  2. $cot^{-1} \sqrt{2}$

  3. $\dfrac{\pi}{6}$

  4. none of these


Correct Option: A

If the plane $2x-3y+6z-11=0$ makes an angle $\sin^{-1}(k)$ with x-axis, then $k$ is equal to:

  1. $\cfrac {\sqrt{3}}{2}$

  2. $\dfrac 27$

  3. $\dfrac {\sqrt{2}}{3}$

  4. $1$


Correct Option: B
Explanation:

Given plane is $2x−3y+6z−11=0$


We know $\sin\theta=\dfrac {\vec b . \vec n}{|\vec b| |\vec n|}$


Here $\vec n$ is the normal vector to the plane

$\vec n= 2\vec i -3 \vec j+6\vec k$

and $\vec b $ is along x axis

$\therefore \sin\theta=\dfrac {(2\vec i-3\vec j+6\vec k).\vec i}{{\sqrt{2^2+(-3)^2+6^2\sqrt12}}}$

$\therefore \dfrac{2}{\sqrt49}=\dfrac{2}{7}$

Hence, B is correct option

The angle between the line $\displaystyle x = y = z$ and the plane $\displaystyle 4x - 3y + 5z = 2$ is

  1. $\displaystyle \cos^{-1} \frac{\sqrt{6}}{5}$

  2. $\displaystyle \sin ^{-1} \frac{\sqrt{6}}{5}$

  3. $\displaystyle \frac{\pi }{2}$

  4. $\displaystyle \sin ^{-1} \frac{1}{\sqrt{6}}$


Correct Option: B
Explanation:

Direction ratios of $x=y=z$ are $(1,1,1)$....(1)

Let angle between the above line and $4x -3y+5z=2$ is $ \theta$.

$ \Rightarrow $ angle between the line and normal to the plane is $90^{o} - \theta$...(2)

Direction ratios of normal to the given plane are $(4, -3, 5)$....(3)

From (1), (2) and (3), $ \cos {(90^{o}- \theta)}=\dfrac{1 \times 4 + 1 \times (-3)+ 1 \times 5}{\sqrt{1^2+1^2+1^2}{ \sqrt {4^2+3^2+5^2}}}=\dfrac{6}{\sqrt{3} \times 5 \times \sqrt{2}}$

$ \Rightarrow \sin {\theta}= \dfrac{\sqrt{6}}{5} $

$\Rightarrow \theta = \sin^{-1}{\dfrac{\sqrt{6}}{5}}$

Given the line $\displaystyle L:\frac { x-1 }{ 3 } =\frac { y+1 }{ 2 } =\frac { z-3 }{ -1 } $ and the plane $\pi :x-2y=0$. Of the following assertion, the only one that is always true is

  1. $L$ is $\bot$ to $\pi$

  2. $L$ lies in $\pi$

  3. $L$ is parallel to $\pi$

  4. None of these


Correct Option: B
Explanation:

Since $3\left( 1 \right) +2\left( -2 \right) +\left( -1 \right) \left( -1 \right) =3-4+1=0,$
$\therefore$ given line is $\bot $ to the normal to the plane i.e., given line is parallel to the given plane.
Also $\left( 1,-1,3 \right) $ lies on the plane $x-2y-z=0$, if $1-2\left( -1 \right) -3=0$ i.e., $1+2-3=0$
which is true 

$\therefore L$ lies in plane $\pi .$