Tag: introduction to three dimensional geometry

Questions Related to introduction to three dimensional geometry

Find the distance between the points whose position vectors are given as follows

$(-1,1,3), (0,5,6)$

  1. $\displaystyle \sqrt{118}$

  2. $8$

  3. $\displaystyle \sqrt{26}$

  4. none of these


Correct Option: C
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(-1,1,3)$, $(0,5,6)$
Distance $=\sqrt { \left( -1-0 \right) ^{ 2 }+\left( 1-6 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 } } $
                $=\sqrt { 26 } $

Find the distance between the points whose position vectors are given as follows

$-2\hat i+3\hat j+5\hat k, 7\hat i-\hat k$

  1. $\displaystyle 3\sqrt{14}$

  2. $\displaystyle \sqrt{54}$

  3. $\displaystyle 3\sqrt{19}$

  4. $\displaystyle \sqrt{57}$


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $-2\hat i+3\hat j+5\hat k$, $7\hat i-\hat k$
Distance $=\sqrt { \left( -2-7 \right) ^{ 2 }+\left( 3-0 \right) ^{ 2 }+\left( 5+1 \right) ^{ 2 } } $
                $=\sqrt { 126 } $
                $=3\sqrt { 14 } $

Find the distance between the points whose position vectors are given as follows

$4\hat i+3\hat j-6\hat k, -2\hat i+\hat j-\hat k$

  1. $\displaystyle \sqrt{65}$

  2. $\displaystyle \sqrt{69}$

  3. $13$

  4. none of these


Correct Option: A
Explanation:

Distance Between two position vectors $a\hat i+b\hat j+c\hat k$ and $x\hat i+y\hat j+z\hat k$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $4\hat i+3\hat j-6\hat k$, $-2\hat i+\hat j-\hat k$
Distance $=\sqrt { \left( 4+2 \right) ^{ 2 }+\left( 3-1 \right) ^{ 2 }+\left( -6+1 \right) ^{ 2 } } $
                $=\sqrt { 65 } $

The name of the figure formed by the points $(3, -5, 1), (-1, 0, 8)$ and $(7, -10, -6)$ is

  1. a triangle

  2. a straight line

  3. an isosceles triangle

  4. an equilateral triangle


Correct Option: B
Explanation:

Let $A=(3,-5,1), B = (-1,0,8)$ and $C=(7,-10,-6)$

Now, 
$AB =\sqrt{(3+1)^2+(-5-0)^2+(1-8)^2}=\sqrt {90}=3\sqrt{10}$,
$BC =\sqrt{(-1-7)^2+(0+10)^2+(8+6)^2}=\sqrt{360}=6\sqrt{10}$ 
and $CA =\sqrt{(7-3)^2+(-10+5)^2+(-6-1)^2}=\sqrt{90}=3\sqrt{10}$
Clearly $BC = AB+CA$
$\therefore  $ given points lies on straight line. 

If $(1, 1, a)$ is the centroid of the triangle formed by the points $(1, 2, -3)$ , $(\mathrm{b}, 0, 1)$ and $(-1, 1, -4)$ then $a-b$ $=$

  1. $-5$

  2. $-7$

  3. $5$

  4. $1$


Correct Option: A
Explanation:

The coordinates of the vertices of the triangle are given by $(1,2,-3) , (b,0,1), (-1,1,-4)$

Accordingly the coordinates of the centroid of this triangle will be given by 

($ \dfrac{b}{3}, 1 , -2 $)

Hence, $ \dfrac{b}{3} $ $= 1$ Or, $b= 3$

and $a = -2$

So $a- b = -5$

The circum centre of the triangle formed by the points $(2, 5, 1), (1, 4, -3)$ and $(-2, 7, -3)$ is

  1. $(6,0,1)$

  2. $(0,6,-1)$

  3. $(-1,6,2)$

  4. $(6,1,-2)$


Correct Option: B
Explanation:

Let the points $A(2,5,1) B(1,4,-3)$ and $C(-2,7,-3)$
Now using distance formula in $3D$, we have
$AB {=}$$\sqrt{18}$, $BC {=}$$\sqrt{18}$, and $AC {=}$$\sqrt{36}$
Since, ${AB}^{2}+{BC}^{2}$${=}$${AC}^{2}$
Hence, it is right angle triangle and as we know that the circumcentre of right angled triangle is at the midpoint of hypotenuse i.e $AC$.
Therefore by using section formula (1:1), circumcentre ${=}(0,6,-1)$

Assertion (A): The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus
Reason (R): $AB = BC = CD = DA$ and $AC = BD$

  1. Both A and R are individually true and R is the correct explanation of A

  2. Both A and R individually true but R is not the correct explanation of A

  3. A is true but R is false

  4. Both A and R false


Correct Option: D
Explanation:
Given: The points $A(2,9,12) ,B(1,8,8) ,C(2,11,8) D(1,12,12)$ are the vertices of a rhombus. 
So using distance formula Reason is not true. 
Thus both A and R false. 

$P(0,5,6),Q(1,4,7),R(2,3,7)$ and $S(3,5,16)$ are four points in the space. The point nearest to the origin $O(0,0,0)$ is

  1. $P$

  2. $Q$

  3. $R$

  4. $S$


Correct Option: A
Explanation:

The $4$ points are as given.
We calculate their individual distance from the origin.
$OP =$ $ {({5}^{2} + {6}^{2})}^{0.5} $ = $ {(61)}^{0.5} $
$OQ =$ $ {({1}^{2} + {4}^{2} + {7}^{2} )}^{0.5} $ = $ {(66)}^{0.5} $
$OR =$ $ {({2}^{2} + {3}^{2} + {7}^{2} )}^{0.5} $ = $ {(62)}^{0.5} $
$OS =$ $ {({3}^{2} + {5}^{2} + {16}^{2} )}^{0.5} $= $ {(290)}^{0.5} $
Hence, $P$ is the nearest to the origin.

The name of the figure formed by the points $(-1, -3, 4), (5, -1,1), (7, -4, 7)$ and $(1, -6, 10)$ is a

  1. square

  2. rhombus

  3. parallelogram

  4. rectangle


Correct Option: B
Explanation:

Keeping the above points as vertices and using the distance formula, 
$D=\sqrt{(x _{2}-x _{1})^{2}+(y _{2}-y _{1})^{2}+(z _{2}-z _{1})^{2}}$
We get that the sides of the parallelogram formed by the above lines are equal and all the sides are of $7$ units.
Hence the parallelogram will be either a rhombus or a square. For the parallelogram to be square, all the adjacent sides of the parallelogram should make an angle of $\dfrac{\pi}{2}$.
Consider the vector equation of $AB$ as $(5-(-1))i'+(-1-(-3))j'+(1-4)k'$
$6i'+2j'-3k'$
Consider the vector equation of $BC$ as $(7-5)i'+(-4-(-1))j'+(7-1)k'$
$2i'-3j'+6k'$
Taking dot product, we get $6(2)+2(-3)-3(6)$
$=12-6-18$
$=-12$
Thus the parallelogram is a rhombus.

A hall has dimensions $24 m \times 8 m \times 6 m$. The length of the longest pole which can be accommodated in the hall is

  1. 26 m

  2. 28 m

  3. 30 m

  4. 36 m


Correct Option: A
Explanation:

Given that,

Dimensions of the hall x $=24cm\times 8cm\times 6cm$

Now Leght of the longest pole which can be accommodated in the hall x $=\sqrt{{{24}^{2}}+{{8}^{2}}+{{6}^{2}}}=26cm$