Tag: introduction to three dimensional geometry

Questions Related to introduction to three dimensional geometry

The points (-5,12), (-2,-3),(9,-10),(6,5) taken in order, form

  1. Parallelogram

  2. rectangle

  3. rhombus

  4. square


Correct Option: A
Explanation:

Given points $A(-5, 12)\quad B(-2, -3), C(9, -10), D(6, 5)$


Distance $AB=\sqrt{(-5+2)^2+(12+3)^2}=\sqrt{9+225}=\sqrt{234}$
Distance $BC=\sqrt{(-2-9)^2+(-3+10)^2}=\sqrt{121+49}=\sqrt{170}$

Distance $CD=\sqrt{(9-6)^2+(-10-5)^2}=\sqrt{9+225}=\sqrt{234}$
Distance $AD=\sqrt{(-5-6)^2+(12-5)^2}=\sqrt{121+49}=\sqrt{170}$

Distance $AC=\sqrt{(-5-9)^2+(12+10)^2}=\sqrt{196+484}=\sqrt{680}$
Distance $BD=\sqrt{(-2-6)^2+(-3-5)^2}=\sqrt{64+64}=\sqrt{128}$

These points forms a parallelogram, opposite pair of sides are equal and adjacent sides do not form right angles.

If G is the centroid of $\triangle ABC$ and BC = 3, CA = 4, AB = 5 then BG =

  1. $\dfrac { \sqrt { 73 } }{ 3 } $

  2. $\dfrac { \sqrt { 13 } }{ 3 } $

  3. $\dfrac { \sqrt { 52 } }{ 3 } $

  4. $\dfrac { \sqrt { 26 } }{ 3 } $


Correct Option: C

If $( 3,4 )$ and $( 6,5 )$ are the extremities of a diagonal of a parallelogram and $( 2,1 )$ is is third vertex, then its fourth vertex is _______.

  1. $( - 1,0 )$

  2. $( - 1,1 )$

  3. $( 0,-1 )$

  4. $( 7,8 )$


Correct Option: D

The foot of the perpendicular from the point $A(7, 14, 5)$ to the plane $2x+4y-z=2$ is?

  1. $(3, 1, 8)$

  2. $(1, 2, 8)$

  3. $(3, -3, 5)$

  4. $(5, -3, -4)$


Correct Option: B
Explanation:

Let N be the foot of the perpendicular drawn from the point $A(7, 14, 5)$ and perpendicular to the plane $2x+4y-z=2$

Then, the equation of the line PN is $\dfrac{x-7}{2}=\dfrac{y-14}{4}=\dfrac{z-5}{-1}=\lambda$ (say)

Let the coordinates of N be $N(2\lambda +7, 4\lambda +14, -\lambda +5)$

Since N lies on the plane $2x+4y-z=2$, so

$2(2\lambda +7)+4(4\lambda +14)-(-\lambda +5)=2$

$\Rightarrow 21\lambda =-63$

$\Rightarrow \lambda =-3$

$\therefore$ required foot of the perpendicular is

$N(-6+7, -12+14, 3+5)$, i.e., $N(1, 2, 8)$.

In geometry, we take a point, a line and a plane as undefined terms.

  1. True

  2. False

  3. Ambiguous

  4. Data Insufficient


Correct Option: A
Explanation:

 In Geometrywe define a point as a location and no size. A line is defined as something that extends infinitely in either direction but has no width and is one dimensional while a plane extends infinitely in two dimensions.

Arrange the points: $\mathrm{A}(1,2-3), \mathrm{B}(-1,2,-3), \mathrm{C}(-1,-2-3)$ and $\mathrm{D}(1,-2, -3)$ in the increasing order of their octant numbers:

  1. $A,B,C,D$

  2. $B,C,D,A$

  3. $C,D,A,B$

  4. $D,C,B,A$


Correct Option: A
Explanation:
 Octant $I$  $II$ $III$  $IV$  $V$  $VI$  $VII$ $VIII$
 Signs: $+,+,+$  $-,+,+$ $-,-,+$  $+,-,+$  $+,+,-$ $-,+,-$ $-,-,-$  $+,-,-$ 

Based on this, increasing order is

$ A,B ,C,D$

Graph $x^2+y^2=4$ in 3D looks like

  1. Circle

  2. Cylinder

  3. Hemisphere

  4. Sphere


Correct Option: B
Explanation:

The given curve is $x^2+y^2=4$ 

So $x$ coordinate and y-coordinate are connected by $x^2+y^2=4$
which is locus of a circle with radius $2$
But z-coordinate can be anything, so in three dimension the circle $x^2+y^2=4$ will be 
stretched which will be a cylinder with radius same as the radius of the circle .

The point $(0 , -2 , 5)$ lies on the

  1. z axis

  2. x axis

  3. xy plane

  4. yz plane

  5. xz plane


Correct Option: D
Explanation:

Given point is $(0,-2,5)$
The $X$-coordinate in the given point is zero. 

So, the point lies on $yz$ plane.

The coordinates of any point, which lies in $yz$ plane, are

  1. $(x,y,y)$

  2. $(0,y,y)$

  3. $(0,y,x)$

  4. $(x,y,z)$


Correct Option: B,C
Explanation:

In a $y-z$ plane, x co-ordinate is always $0$

So $(0,y,y)$ and $(0,y,x)$ are point in a $y-z$ plane.

An equation of sphere with centre at origin and radius $r$ can be represented as

  1. $x^2+y^2+z^2=r$

  2. $x^2+y^2+z^2=r^2$

  3. $x^2+y^2+z^2=2r^2$

  4. None of the above


Correct Option: B
Explanation:

Sphere is locus of a point in 3D whose distance from a fixed point(center) is constant (radius)

$\Rightarrow \sqrt{(x-0)^2+(y-0)^2+(z-0)^2}=|r|$
$\Rightarrow x^2+y^2+z^2=r^2$, square both sides