Tag: introduction to three dimensional geometry

Questions Related to introduction to three dimensional geometry

The distance of the point $P(3,8,2)$ from the line $\dfrac{x-1}{2}=\dfrac{y-3}{4}=\dfrac{z-2}{3}$ measured parallel to the plane $3x+2y-2z+15=0$ is 

  1. $5\sqrt[2}$

  2. $18$

  3. $9\sqrt{3}$

  4. $7$


Correct Option: A

If the shortest distance between the line 
$\dfrac {x-1}{\alpha}=\dfrac {y+1}{-1}=\dfrac {z}{1}(\alpha \neq 1)$ and $x+y+z+1=0=2x-y+z+3$ is $\dfrac {1}{\sqrt {3}}$, then a value $\alpha$ is:

  1. $-\dfrac {16}{19}$

  2. $-\dfrac {19}{16}$

  3. $\dfrac {32}{19}$

  4. $\dfrac {19}{23}$


Correct Option: A

The shortest distance between line $y-x=1$ and curve $x=y^{2}$ is :-

  1. $\dfrac{8}{3\sqrt{2}}$

  2. $\dfrac{4}{\sqrt{3}}$

  3. $\dfrac{\sqrt{3}}{4}$

  4. $\dfrac{3\sqrt{2}}{8}$


Correct Option: A

A point $Q$ at a distance $3$ from the point $P(1,1,1)$ lying on the line joining the points $A(0,-1,3)$ and $P$, has the coordinates

  1. $(2,3,-1)$

  2. $(4,7,-5)$

  3. $(0,-1,3)$

  4. $(-2,-5,7)$


Correct Option: A,C
Explanation:

Let the coordinates of point $Q$ be $(a,b,c)$


The distance of $Q$ from $P(1,1,1)$ is $3$


The equation of line $AP$ is $\displaystyle \frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{-2}$

Therefore the point on the line $AP$ will look like $Q(t+1,2t+1,1-2t)$

$|QP|=\sqrt{(t+1-1)^2+(2t+1-1)^2+(1-2t-1)^2}=\sqrt{9t^2}=3$

So $|QP| = \pm3t=3$

$\Rightarrow t=\pm1$

So the possible coordinates of $Q$ are $(2,3,-1)$ and $(0,-1,3)$

Therefore the correct options are $A$ and $C$

The distance of the point $\left( 1,-2,3 \right) $ from the plane $x-y+z=5$ measured parallel to the line $\displaystyle \frac { x }{ 2 } =\frac { y }{ 3 } =\frac { z-1 }{ -6 } $ is

  1. $1$

  2. $2$

  3. $4$

  4. None of these


Correct Option: A
Explanation:

Equation of the line through $\left( 1,-2,3 \right) $ parallel to the line $\displaystyle \dfrac { x }{ 2 } =\dfrac { y }{ 3 } =\dfrac { z-1 }{ -6 } $ is


$\displaystyle \dfrac { x-1 }{ 2 } =\dfrac { y+2 }{ 3 } =\dfrac { z-1 }{ -6 } =r$ (say)   ...$(1)$


Then any point on $(1)$ is $\left( 2r+1,3r-2,-6r+3 \right) $.


If this point lies on the plane $x-y+z=5$, then 


$\displaystyle \left( 2r+1 \right) -\left( 3r-2 \right) +\left( -6r+3 \right) =5\Rightarrow -7r+6=5\Rightarrow r=\dfrac { 1 }{ 7 } $


Hence, the point is $\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $


Distance between $\left( 1,-2,3 \right) $ and $\displaystyle \left( \dfrac { 9 }{ 7 } ,-\dfrac { 11 }{ 7 } ,\dfrac { 15 }{ 7 }  \right) $


$\displaystyle =\sqrt { \left( \dfrac { 4 }{ 49 } +\dfrac { 9 }{ 49 } +\dfrac { 36 }{ 49 }  \right)  } =\sqrt { \dfrac { 49 }{ 49 }  } =1$

The points $(4, -5, 1)$, $(3, -4, 0)$, $(6, -7, 3)$, $(7, -8, 4)$ are vertices of a

  1. square

  2. parallelogram

  3. rectangle

  4. rhombus


Correct Option: B
Explanation:

Let $A=(4,-5,1)$
$B=(3,-4,0)$
$C=(6,-7,3)$
$D=(7,-8,4)$
Now let the quadrilateral be $ABCD$.
Then
$AB=-i+j-k$ $|AB|=\sqrt{3}$
$BC=3i-3j+3k$ $|BC|=3\sqrt{3}$
$CD=i-j+k$  $|CD|=\sqrt{3}$
$AD=3i-3j+3k$ $|AD|=3\sqrt{3}$.
Hence opposite sides are equal and parallel.
Therefore the above points form a parallelogram.
Now all the sides are not equal.
Hence it cannot qualify as a rhombus or square.
Now dot product of $AB$ and $BC$ is not zero.
Hence adjacent sides are not perpendicular to each other.
Therefore it is not a rectangle also.

$A, B, C$ are three points on the axes of $x, y$ and $z$ respectively at distance $a, b, c$ from the origin $O$; then the co - ordinates of the point which is equidistant from $A, B, C$ and $O$ is

  1. $\displaystyle \left ( a,b,c \right )$

  2. $\displaystyle \left ( \frac{a}{2},\frac{b}{2},\frac{c}{2} \right )$

  3. $\displaystyle \left ( \frac{a}{3},\frac{b}{3},\frac{c}{3} \right )$

  4. None of these


Correct Option: B
Explanation:

Let $P$ be the required point $\displaystyle \left ( x,y,z \right )$ and the point
$A, B, C$ and $O$ are $\displaystyle \left ( a,0,0 \right ),\left ( 0,b,0 \right ),\left ( 0,0,c \right )$ and $\displaystyle \left ( 0,0,0 \right )$ ;

We are given that $\displaystyle PO=PA=PB=PC.$
Taking $\displaystyle PO=PA$ or $\displaystyle PO^{2}=PA^{2},$ we get
$\displaystyle x^{2}+y^{2}+z^{2}=\left ( x-a \right )^{2}+y^{2}+z^{2}$
$\displaystyle 0=a^{2}-2ax$  i.e.  $\displaystyle x=\dfrac {a}{2}$
Similarly taking $\displaystyle PO^{2}=PB^{2}$ and $\displaystyle PO^{2}=PC^{2},$ we get 
$\displaystyle y=\dfrac {b}{2}$ and $\displaystyle z=\dfrac {c}{2}$

Perimeter of triangle whose vertices are $(0,4,0), (3,4,0)$ and $(0,4,4)$, is

  1. $10$

  2. $12$

  3. $25$

  4. $15$


Correct Option: B
Explanation:

 Vertices of triangle are $(0,4,0),(3,4,0)$ and $(0,4,4)$

then perimeter=?
here AB=$\sqrt{(3-0)^2+(4-4)^2+(0-0)^2}$
$=3$
BC$=\sqrt{(3-0)^2+(4-4)^2+(0-4)^2}$
$=\sqrt{9+16}$
$=5$
CA$=\sqrt{(0-0)^2+(4-4)^2+(0-4)^2}=4$
used distance formula b/w two points
$(x _1,y _1,z _1) and (x _2,y _2,z _2)$
$=\sqrt{(x _2-x _2)^2+(y _2-y _1)^2+(z _2-z _1)^2}$
$ perimeter =ABC+BC+CA$
$=3+5+4$
$=12\ units$

Let the distance between vectors are given as follows :
$(i)4i +3j-6k, -2i+j-k$  be $\displaystyle \sqrt{k}$
$(ii) -2i+3j+5k, 7i-k $  be  $\displaystyle m\sqrt{n}$
Find $k-(m*n)$ ?

  1. 20

  2. 21

  3. 22

  4. 23


Correct Option: D
Explanation:

(i) Distance between $4i + 3j - 6k$ and $-2i + j - k$ is given by $\sqrt{(4 + 2)^2 + (3 - 1)^2 + (-6 + 1)^2} = \sqrt{36 + 4 + 25} = \sqrt{65}$

$\Rightarrow k = 65$

(ii) Distance between $-2i + 3j + 5k$ and $7i - k$ would be $\sqrt{(-2 - 7)^2 + (3)^2 + (5 + 1)^2} = \sqrt{81 + 9 + 36} = \sqrt{126} = 3\sqrt{14}$
$\Rightarrow m = 3, n = 14$

$\therefore k - (m*n) = 65 - (3 \times 14) = 65 - 42 = 23$

Find the distance between the pairs of points whose cartesian coordinates are $(2,3,-1), (2,6,2).$

  1. $\displaystyle 3\sqrt{2}.$

  2. $\displaystyle 2\sqrt{3}.$

  3. $\displaystyle 5\sqrt{2}.$

  4. $\displaystyle 2\sqrt{5}.$


Correct Option: A
Explanation:

Distance Between two points $(a,b,c)$ and $(x,y,z)$ is given by
$\sqrt { \left( a-x \right) ^{ 2 }+\left( b-y \right) ^{ 2 }+\left( c-z \right) ^{ 2 } } $
Given $(2,3,-1)$, $(2,6,2)$
Distance $=\sqrt { \left( 2-2 \right) ^{ 2 }+\left( 3-6 \right) ^{ 2 }+\left( -1-2 \right) ^{ 2 } } $
                $=\sqrt { 18 } $
                $=3\sqrt { 2 }$