Tag: complex numbers and linear inequations

Questions Related to complex numbers and linear inequations

Is the following quadratic polynomial reducible or irreducible?
$f(x) = x^2 - \sqrt2$

  1. Reducible with one real root

  2. Reducible with two real roots

  3. Irreducible

  4. None of these


Correct Option: B
Explanation:

Let $\sqrt 2=a^2\Rightarrow a^2=2^{1/2}\Rightarrow a=2^{1/4}$

So $f(x)=x^2-a^2=(x+a)(x-a)=(x+2^{1/4})(x-2^{1/4})$, using $a^2-b^2=(a+b)(a-b)$
So given quadratic is reducible to two real roots 

If $x=2+\sqrt{3}$, $xy=1$, then $\cfrac { x }{ \sqrt { 2 } +\sqrt { x }  } +\cfrac { y }{ \sqrt { 2 } +\sqrt { y }  } =$.......

  1. $\sqrt{2}$

  2. $\sqrt{3}$

  3. $1$

  4. $2$


Correct Option: A
Explanation:
Given $x=2+\sqrt{3}$ and $xy=1$
$\Rightarrow\,y=\dfrac{1}{x}=\dfrac{1}{2+\sqrt{3}}=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$
Let $\sqrt{x}=\sqrt{a}+\sqrt{b}$
then $x=a+b+2\sqrt{ab}$ by squaring both sides
We have $x=2+\sqrt{3}=a+b+2\sqrt{ab}$
$\Rightarrow\,a+b=2,\,\sqrt{ab}=\dfrac{\sqrt{3}}{2}$ or $ab=\dfrac{3}{4}$
$\Rightarrow\,{\left(a-b\right)}^{2}={\left(a+b\right)}^{2}-4ab=4-4\times \dfrac{3}{4}=4-3=1$
$\Rightarrow\,a-b=1$
$\Rightarrow\,a+b=2,\,a-b=1$
$\Rightarrow\,2a=3$
$\Rightarrow\,a=\dfrac{3}{2}$
Put $a=\dfrac{3}{2}$ in $a+b=2$
$b=2-a=2-\dfrac{3}{2}=\dfrac{4-3}{2}=\dfrac{1}{2}$
$\therefore\,a=\dfrac{3}{2},b=\dfrac{1}{2}$
So,$\sqrt{x}=\dfrac{\sqrt{3}+1}{\sqrt{2}}$
$\sqrt{y}=\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{2}}{\sqrt{3}+1}\\$
$\sqrt{y}=\dfrac{\sqrt{2}}{\sqrt{3}+1}\times\dfrac{\sqrt{3}-1}{\sqrt{3}-1}\\$
$=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{2}\times\dfrac{\sqrt{2}}{\sqrt{2}}\\$
$=\dfrac{2\left(\sqrt{3}-1\right)}{2\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\\$
Now substitute in the given expression:
$\dfrac{x}{\sqrt{2}+\sqrt{x}}=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{\sqrt{2}\times \sqrt{2}+\sqrt{3}+1}\\$
$=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{2+\sqrt{3}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}\\$
$=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}\times\dfrac{3-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\sqrt{2}\left(3+\sqrt{3}\right)}{6}\\$
$\dfrac{y}{\sqrt{2}-\sqrt{y}}=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{\sqrt{2}\times \sqrt{2}-\sqrt{3}+1}\\$
$=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}\\$
$=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}\times\dfrac{3+\sqrt{3}}{3+\sqrt{3}}=\dfrac{\sqrt{2}\left(3-\sqrt{3}\right)}{6}\\$
Now,$\dfrac{x}{\sqrt{2}+\sqrt{x}}+\dfrac{y}{\sqrt{2}-\sqrt{y}}=\dfrac{\sqrt{2}\left(3+\sqrt{3}\right)}{6}+\dfrac{\sqrt{2}\left(3-\sqrt{3}\right)}{6}$
$=\dfrac{\sqrt{2}\left(3+\sqrt{3}+3-\sqrt{3}\right)}{6}$
$=\dfrac{6\sqrt{2}}{6}=\sqrt{2}$

The method of finding solution by trying out various values for the variable is called

  1. Error method

  2. Trial and error method

  3. Testing method

  4. Checking method


Correct Option: B
Explanation:

$\Rightarrow$  The method of finding solution by trying out various values for the variable is called $Trial\,and\,error\,method.$

$\Rightarrow$  In this method, we often make a guess of the root of the equation.
$\Rightarrow$  We fine the values of L.H.S and R.H.S of the given equations for different values of the variable.
$\Rightarrow$  The values of the variable for which L.H.S = R.H.S is the root of the equation.

If $f\left( {x,y} \right) = \sqrt {{x^2} + {y^2}}  + \sqrt {{{\left( {x - 1} \right)}^2} + {y^2}}  + \sqrt {{x^2} + {{\left( {y - 1} \right)}^2}}  + \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 4} \right)}^2}} $ where $x,y \in R$, then the minimum value of $f\left( {x,y} \right)$ is

  1. $2 + \sqrt 5 $

  2. $5 + \sqrt 2 $

  3. $5 - \sqrt 2 $

  4. $\sqrt 5 - 2$


Correct Option: A

$|x - 1| + |x + 3| + |x - 5| = k$
How many values does $k$ have.

  1. only one solution

  2. two solution

  3. no solution

  4. infinite solutions


Correct Option: A

Consider the equation $(1 + a + b)^{2} = 3(1 + a^{2} + b^{2})$, where a, b are real numbers.
Then

  1. there is no solution pair (a, b)

  2. there are infinitely many solution pairs (a, b)

  3. there are exactly two solution pairs (a, b)

  4. there is exactly one solution pair (a, b)


Correct Option: D
Explanation:

$ (1+a+b)^{2} = 3(1+a^{2}+b^{2}) $

$ \Rightarrow (1+a^{2}+b^{2} + 2a + 2b + 2ab) = 3 + 3a^{2} +3b^{2} $
$ \Rightarrow a^{2}+b^{2} -ab-a-b+1 = 0 $
$ \Rightarrow (a-b)^{2} + ((a-1)(b-1)) = ((a-1)-(b-1))^{2} + ((a-1)(b-1)) = 0 $
Let $ a-1 = x $ and $ b-1 = y $

$ \Rightarrow (x-y)^{2} + (xy) = 0 $
$ \Rightarrow x^{2} - xy + y^{2} = 0 $                                 ...($1$)
Assume $ y \neq 0 $ and divide by $ y^{2} $

$ \Rightarrow \left ( \dfrac{x}{y} \right )^{2} - \dfrac{x}{y} + 1 = 0 $
Substitute $ t = \dfrac{x}{y} $
$ \Rightarrow t^{2} - t + 1 = 0 $
Discriminant $ D = 1-4 = -3 < 0 $. No solution here.

Assume $ y = 0 $ in equation ($1$). It satisfies the equation for $ x = 0 $. Hence the solution is $x=0$ and $y=0$

$ \Rightarrow a=1$ and $b=1$

The equations of the plane through the points $(1,-1,2),(-3,2,-2)$ and perpendicular to the plane $x+2y+3z+7=0$ is  

  1. $x+16y+11z-7=0$

  2. $17x+8y-11z+13=0$

  3. $x+y+z-2=0$

  4. $x-5y-3z=0$


Correct Option: B