Tag: complex numbers and linear inequations
Questions Related to complex numbers and linear inequations
If $i^{2} =-1$, then $i^{162}$ is equal to
If $i=\sqrt{-1}$, then select from the following having the greatest value.
Solve:
$\left ( \dfrac{2i}{1 \, + \, i} \right )^2$
Find the least value of $n$ for which $\left (\dfrac {1 + i}{1 - i}\right )^{n} = 1$.
If $\dfrac { z+2i }{ z-2i } $ is purely imaginary then $\left| z \right| $ is
Simplify the following :
$\left(\dfrac{1 \, + \, i}{1 \, - \, i}\right)^{4n \, + \, 1}$
$\left(\sqrt[3]{3}+\left(3^\cfrac{5}{6}\right)i\right)^3$ is an integer where $i=\sqrt{-1}$. The value of the integer is equal to.
The value of $\sqrt{i}$ is
If ${ \left( \sqrt { 3 } -i \right) }^{ n }={ 2 }^{ n }, n\in Z$, then $n$ is multiple
For positive integers $n _1, n _2$ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2} $, where $i = \sqrt{-1}$, is a real number if