Tag: complex numbers and linear inequations
Questions Related to complex numbers and linear inequations
If $\begin{vmatrix}6i & -3i & 1\4 & 3i & -1\20 & 3 & i\end{vmatrix} = x+ iy$, then
Let $\displaystyle \Delta =\left | \begin{matrix}a _{11} & a _{12} & a _{13}\a _{21} &a _{22} &a _{23} \a _{31} &a _{32} &a _{33} \end{matrix} \right |$ and $\displaystyle a _{pq}= i^{p+q}$ where $\displaystyle i= \sqrt{-1}.$ The value of $\displaystyle \Delta $ is
The sequence $S=i+2{ i }^{ 2 }+3{ i }^{ 3 }+.......$ upto 100 times simplifies to where $i=\sqrt { -1 } $.
Find the value of $\dfrac{i^6 + i^7 + i^8 + i^9}{i^2 + i^3}$
The value of the sum $\displaystyle \sum _{n=1}^{13}(i^n+i^{n+1})$, where $i=\sqrt {-1}$, equals
The value of $5\sqrt {-8}$ is
The value of $2\sqrt {-49}$ is equal to
The value of $\sqrt {-36} $ is
If $(i^{413})(i^x)=1$, then determine the one possible value of x.
Evaluate and write in standard form $(4-2i)(-3+3i)$, where ${i}^{2}=-1$.