Tag: complex numbers and linear inequations
Questions Related to complex numbers and linear inequations
Evaluate $i^{135}$
$\displaystyle \left ( i \right )^{457}$
The smallest integer n such that $\displaystyle \left(\frac{1+i}{1-i}\right)^{n}= 1$ is
$\displaystyle \left ( \frac{1 + i}{1 - i} \right )^2 + \left(\frac{1 - i}{1 + i} \right )^2$ is equal to
The value of $\sqrt {-1} $ is
The value of $-3\sqrt {-10}$ is equal to
Find the value of $\displaystyle \left( 4+2i \right) \left( 4-2i \right) $ given that $\displaystyle { i }^{ 2 }=-1$.
If $i^{2} = -1$, calculate the value of $3i^{2} + i^{3} - i^{4}$.
The value of the sum $\displaystyle \sum _{ n=1 }^{ 13 }{ \left( { i }^{ n }+{ i }^{ n+1 } \right) }$. where $i=\sqrt { -1 }$, equals
Evaluate: $i^{24} + \left(\dfrac{1}{i}\right)^{26}$