Tag: inequalities in triangle
Questions Related to inequalities in triangle
If $\displaystyle |Z - \frac {4}{Z}| = 2$, then the maximum value of $\displaystyle |Z|$ is equal to
The maximum value of $\left| z \right| $ when $z$ satisfies the condition $\displaystyle \left| z+\dfrac { 2 }{ z } \right| =2$ is
If the complex number z satisfies the condition |z| $\geq$ 3, then the least value of $\displaystyle \left | z + \frac{1}{z} \right |$ is equal to.
Let $\left| { z } _{ r }-r \right| \le r$, for all $ r = 1, 2, 3, ..., n.$ Then $\left| \sum _{ r=1 }^{ n }{ { z } _{ r } } \right| $ is less than
If $Re(z)$ is a positive integer, then value of the $|1+z+...+z^n|$ cannot be less than
If $z _{1},\ z _{2}--,\ z _{n}$ are complex numbers such that $|z _{i}|<\mathrm{l}\mathrm{a}\mathrm{n}\mathrm{d}\lambda _{i}>0$ for $i=1,2,---n$ and $\lambda _{1}+\lambda _{2}+--+\lambda _{n}=1$ then $|\lambda _{1}z _{1}+\lambda _{2}z _{2}+--+\lambda _{n}\mathrm{z} _{1}|?$
If $\left | z-i \right |\leq 2$ and $z _{0}=13+5i$, then the maximum value of $\left | iz+z _{0} \right |$ is