Tag: inequalities in triangle
Questions Related to inequalities in triangle
lf $|\mathrm{z} _{1}|=2,\ |\mathrm{z} _{2}|=3$, then $|\mathrm{z} _{1}+\mathrm{z} _{2}+5+12\mathrm{i}|$ is less than or equal to
A point M is taken inside a parallelogram ABCD, then area of $\displaystyle \Delta AMD,$ $\displaystyle \Delta AMB,$ $\displaystyle \Delta AMC$ can take which of of the following values, respectively.
Let $z _{1}=24+7i$ and $z _{2}$ be complex number whose magnitude is unity, then
The complex number $z$ satisfies the condition $\left|\displaystyle {z}-\frac{25}{z}\right|=24$. Then the maximum distance from the origin to the point '$z$' in the argand plane is
If $\left |z-\displaystyle \frac{6}{z}\right|=2$, then the greatest value of $|z|$ is
If $|z+4|\leq 3$, then the maximum value of $|{z}+1|$ is
A point $'z'$ moves on the curve $|z - 4 - 3i| = 2$ in an argand plane. The maximum and minimum values of $|z|$ are
If $|{z _1}| = |{z _2}| = |{z _3}| = 1$ and ${z _1} + {z _2} + {z _3} = 0$ then the area of the triangle whose vertices are $z _1, z _2, z _3$ is
Statement 1: $|z _1-a| < a, |z _2-b| < b, |z _3-c| < c$, where a, b, c are positive real numbers, then $|z _1+z _2+z _3|$ is greater than $2|a+b+c|$.
Statement 2: $|z _1\pm z _2| \leq |z _1|+|z _2|$.
$z _0$ is a root of the equation $z^n cos \theta _o+z^{n-1} cos\theta _1+....+z cos\theta _{n-1}+cos\theta _n=2$, where $\theta, \epsilon R$, then