Tag: logarithms
Questions Related to logarithms
$\log \sqrt{6} {216}$ is equal to____
The set of solutions for the equation $\log _{ 10 }{ \left( { a }^{ 2 }-15a \right) } =2$ consists of:
If $\log _{2}x + \log _{4}x + \log _{64} x = 5$, then the value of $x$ will be
If the eccentricity of the ellipse $\cfrac { { x }^{ 2 } }{ { \left( \log { a } \right) }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { \left( \log { b } \right) }^{ 2 } } =1\left( a>b>0,a\neq 1 \right) $ is $\cfrac { 1 }{ \sqrt { 2 } } $ and $c$ be the eccentricity of the hyperbola $\cfrac { { x }^{ 2 } }{ { \left( \log _{ b }{ a } \right) }^{ 2 } } -{ y }^{ 2 }=1\quad $ then ${e}^{2}$ is greater than (where $\log{x}-\ln{x}$)
If $\displaystyle y= a^{\left(\frac{1}{1-\log _{a}x}\right)}$ and $\displaystyle z= a^{\left(\frac{1}{1-\log _{a}y}\right)}$, then relation between $x$ and $z$ is
The solution of the equation ${ 4 }^{ \log _{ 2 }{ \log { x } } }=\log { x } -{ \left( \log { x } \right) }^{ 2 }+1$ is
If $\log _{ 4 }{ \left( x \right) } =12\quad $, then $\log _{ 2 }{ \left( x/4 \right) } $ is equal to
If $a, b, c$ are positive numbers such that $a^{\log _37}=27, b^{\log _711}=49, c^{\log _{11}25}=\sqrt{11}$, then the sum of digits of $S=a^{(\log _37)^2}+b^{(\log _711)^2}+c^{(\log _{11}25)^2}$ is