Tag: logarithms
Questions Related to logarithms
If $ 3^{\log _{4}{x}}=27$, then $x$ is equal to
The value of $3^{\log _{ 4 }{ 5 }} -5 ^{\log _{ 4 }{ 3 }}$ is
If $\log _{k}x.\log _{5}k=\log _{x}5,k\neq 1,k> 0$, then the value of $x$ is equal to
${ \log } _{ a }{ x }^{ n }=n{ \log } _{ a }x$
If $\displaystyle 5x^{log _23} + 3^{log _2x} = 162$ then logarithm of $x$ to the base 4 has the value equal to :
The value of $ a^{\frac{\log _b (\log _b N)}{\log _b a}}$ is
If ${ log } _{ 4 }5=a\quad and\quad { log } _{ 5 }6=b,\quad then\quad { log } _{ 3 }2$ is equal to
If $4^{\log _{2}\log x}=\log x-\left ( \log x \right )^{2}+1$ (base is e), then find the value of $x$
The value of $\left( \log _{ b }{ a } \right) \left( \log _{ c }{ b } \right) \left( \log _{ a }{ c } \right) $ is equal to
Sometimes to solve an equation, we may use the identity ${ a }^{ \log _{ a }{ b } }=b,b>0,a>0,a\neq 1$
Then solution set of $3{ x }^{ \log _{ 5 }{ 2 } }+{ 2 }^{ \log _{ 5 }{ x } }=64$ is,