Tag: logarithms

Questions Related to logarithms

Find the correct expression, if $\log _{ c }{ a } =x$.

  1. ${ a }^{ c }=x$

  2. ${ a }^{ x }=c$

  3. ${ c }^{ a }=x$

  4. ${ c }^{ x }=a$

  5. ${ x }^{ c }=a$


Correct Option: D
Explanation:

Given, $\log _c a=x$

We know the change of base formula:
$\log _c a = x$  is $c^x = a$

Which of the following statements is not correct?

  1. $log _{10} 10 = 1$

  2. $log (2+ 3) = log (2 \times 3)$

  3. $log _{10} 1 = 0$

  4. $log (1 + 2 + 3) = log 1 + log 2 + log 3$


Correct Option: B
Explanation:

(a) Since $log _a a = 1,$ so $log _{10}  10 = 1$
(b) $log (2 + 3) log 5$ and $log (2 \times 3) = log 6 = log 2 + log 3$
$\therefore log(2 + 3) \neq log (2 \times 3)$
(c) Since, $log _a  1 = 0$, so, $log _{10} 1 = 0$.
(d) $log(1 + 2 + 3) = log 6 = log (1 \times 2 \times 3) = log 1 + log 2 + log 3$

If $log _{10} 2 = 0.3010$, the value of $log _{10}$ 80 is

  1. 1.6020

  2. 1.9030

  3. 3.9030

  4. None of these


Correct Option: B
Explanation:

$log _{10} 80 = log _{10} (8 \times 10)$
$= log _{10} 8 + log _{10} 10$
$=log _{10} (2^3) + 1$
$= 3 log _{10} 2 + 1$
$= (3 \times 0.3010) + 1$
$= 1.9030$

If $log 2 = 0.3010 $ and $3 = 0.4771$, the value of $log _5 512$ is

  1. 2.870

  2. 2.967

  3. 3.876

  4. 3.912


Correct Option: C
Explanation:

$log _5 512 = \dfrac{log 512}{log 5}$
$=\dfrac{log 2^9}{log (10/2)}$
$=\dfrac{9 log  2}{log 10 - log 2}$
$=\dfrac{9 \times 0.3010}{1- 0.3010}$
$= \dfrac{2.709}{0.699}$
$=\dfrac{2709}{699}$
$= 3.876$

If $log 2 = 0.30103$, the number of digits in $2^{64}$ i

  1. 18

  2. 19

  3. 20

  4. 21


Correct Option: C
Explanation:

$log (2^{64}) = 64 \times log 2$
$= (64 \times 0.30103)$
$= 19.2592$
Its characteristic is 19.
Hence, then number of digits in $2^{64}$ is 20.

If $log _x \left( \dfrac{9}{16} \right) = - \dfrac{1}{2}$, then x is equal to

  1. $- \dfrac{3}{4}$

  2. $\dfrac{3}{4}$

  3. $\dfrac{81}{256}$

  4. $\dfrac{256}{81}$


Correct Option: D
Explanation:

$log _x \left( \dfrac{9}{16} \right ) = - \dfrac{1}{2}$
$\Rightarrow x^{-1/2} = \dfrac{9}{16}$
$\Rightarrow \dfrac{1}{\sqrt x} = \dfrac{9}{16}$
$\Rightarrow \sqrt x = \dfrac{16}{9}$
$\Rightarrow x = \left( \dfrac{16}{9} \right)^2$
$\Rightarrow x = \dfrac{256}{81}$

What is the value of $\dfrac {1}{2}\log _{10} 25 - 2 \log _{10} 3 +\log _{10} 18$?

  1. $2$

  2. $3$

  3. $1$

  4. $0$


Correct Option: C
Explanation:

The value of $\dfrac {1}{2}\log _{10} 25 - 2 \log _{10} 3 +\log _{10} 18$ is
$= \log _{10}(25)^{1/2} - \log _{10} (3)^{2} + \log _{10}18$
$= \log _{10}5 - \log _{10}9 + \log _{10}18$
$= \log _{10} \left (\dfrac {5}{9}\times 18\right ) $

$= \log _{10} 10 $    ....Using the identity $\log _aa=1$
$= 1$

The value of $log _2$ 16 is

  1. $\dfrac{1}{8}$

  2. 4

  3. 8

  4. 16


Correct Option: B
Explanation:

Let $log _2      16 = n$
Then, $2^n = 16 = 2^4    \Rightarrow n = 4$
$\therefore log _2  16 = 4$

The logarithmic form of ${5}^{2}=25$ is

  1. $\log _{ 5 }{ 2 } =25$

  2. $\log _{ 2 }{ 5 } =25$

  3. $\log _{ 5 }{ 25 } =2$

  4. $\log _{ 25 }{ 5 } =2$


Correct Option: C
Explanation:

$5^2=25$

Taking log with base $5$ both sides, we get
$\log _55^2=\log _525$
$\Rightarrow \log _525=2\log _55$
$\Rightarrow \log _525=2$     $(\log _aa=1)$
Hence, C is the correct option.

The exponential form of $\log _{ 2 }{ 16 } =4$ is

  1. ${2}^{4}=16$

  2. ${4}^{2}=16$

  3. ${2}^{16}=4$

  4. ${4}^{16}=2$


Correct Option: A
Explanation:

Exponential form of $\log _2 16=4$

Taking antilog both sides, we get
$\Rightarrow 16=2^4$
Hence, A is the correct option.