Tag: inequalities in triangles
Questions Related to inequalities in triangles
If $z$ is a complex number satisfying the equation $\left| z+i \right| +\left| z-i \right| =8$, on the complex plane then maximum value of $\left| z \right| $ is
$\begin{array} { l } { \text { If } z _ { 1 } \text { and } z _ { 2 } \text { are complex numbers, then } \left| z _ { 1 } + z _ { 2 } \right| ^ { 2 } = \left| z _ { 1 } \right| ^ { 2 } + \left| z _ { 2 } \right| ^ { 2 } \text { if and only if } z _ { 1 } \overline { z } _ { 2 } \text { is } } \ { \text { purely imaginary. } } \end{array}$
If $|z| < \sqrt 2-1$, then $|z^2+2z cos\alpha|$ is
If $P$ and $Q$ are represented by complex numbers $z _{1}$ and $z _{2}$ such that $\left| \dfrac { 1 }{ { z } _{ 1 } } +\dfrac { 1 }{ { z } _{ 2 } } \right| =\left| \dfrac { 1 }{ { z } _{ 1 } } -\dfrac { 1 }{ { z } _{ 2 } } \right| $ then the circumference of $\triangleOPQ(O is origin)$ is
The sum of all sides of a quadrilateral is lessthan the sum of its diagonals.
If $\left| {z - 1} \right| + \left| {z + 3} \right| \le 8$ then the range of values of $\left| {z - 4} \right|$
If $\left|z\right| <\sqrt{2} -1$, then $\left|z^2 + 2 z cos \alpha \right|$ is
If z be a complex number for which $|2z cos \theta + z^2| = 1$, then the minimum value of |z|
is ......................
$sin^{-1}\left { \frac{1}{i} (z-1)\right }$ ,Where Z is non - real, can be the angle of a triangle, if