Tag: inequalities in triangles
Questions Related to inequalities in triangles
Let $z$ be any point in $\displaystyle A\cap B\cap C$ and let $w$ be any point satisfying $\displaystyle \left | w-2-i \right |< 3.$ Then, $\displaystyle \left | z \right |-\left | w \right |+3$ lies between
If $z=a+ib$ where $a>0,b>0$, then
The minimum value of $\displaystyle \left | z-1 \right |+\left | z \right |$for complex values of z is
If $|z| < 4$, then $|iz+3-4i|$ is less then
If $\displaystyle \left | z-\frac{2}{z} \right |=1$, then the greatest value of $\left | z \right |$ is
If $\displaystyle \left | z \right |< \sqrt{3}-1 $ then $\displaystyle \left | z^{2}+2z\cos\alpha \right | $ is
If $|z-4+3i|\le 1$ and $m$ and $n$ are the least and greatest values of $|z|$ and $k$ is the least value of $\displaystyle \frac { { x }^{ 4 }+{ x }^{ 2 }+4 }{ x } $ on the interval $(0,\infty)$, then $k$ is equal to
The maximum value of $|z|$ when $z$ satisfies the condition $\displaystyle \left | z+\frac{2}{z} \right |=2$
If $\displaystyle z\epsilon C \; and \; \left | z+4 \right |\leq 3$ then the greatest value of $\left | z+1 \right |$ is
If $\left| z - \displaystyle \frac{1}{z}\right| = 1$ then