Tag: inequalities in triangles
Questions Related to inequalities in triangles
The maximum value of |z| where z satisfies the condition $\displaystyle \left | z + \frac{2}{z} \right | = 2$ is
If $|z| \leq 1$ then the minimum and maximum value of |z - 3| are
$|\mathrm{z} _{1}-\mathrm{z} _{2}|=$
lf $|\mathrm{z} _{1}|=2,\ |\mathrm{z} _{2}|=3$, then $|\mathrm{z} _{1}+\mathrm{z} _{2}+5+12\mathrm{i}|$ is less than or equal to
A point M is taken inside a parallelogram ABCD, then area of $\displaystyle \Delta AMD,$ $\displaystyle \Delta AMB,$ $\displaystyle \Delta AMC$ can take which of of the following values, respectively.
Let $z _{1}=24+7i$ and $z _{2}$ be complex number whose magnitude is unity, then
The complex number $z$ satisfies the condition $\left|\displaystyle {z}-\frac{25}{z}\right|=24$. Then the maximum distance from the origin to the point '$z$' in the argand plane is
If $\left |z-\displaystyle \frac{6}{z}\right|=2$, then the greatest value of $|z|$ is
If $|z+4|\leq 3$, then the maximum value of $|{z}+1|$ is
A point $'z'$ moves on the curve $|z - 4 - 3i| = 2$ in an argand plane. The maximum and minimum values of $|z|$ are