Tag: properties of multiplication of matrix
Questions Related to properties of multiplication of matrix
If $A^{2}-A+I=0$, then inverse of $A$ is
The matrices $\begin{bmatrix} \cos { \theta } & -\sin { \theta } \ \sin { \theta } & \cos { \theta } \end{bmatrix}$ and $\begin{bmatrix} a & 0 \ 0 & b \end{bmatrix}$ commute under multiplication
If $A$ and $B$ are two square matrices of order $3 \times 3$ which satisfy $AB = A$ and $BA = B$, then Which of the following is true?
The multiplication of matrices is distributive with respect to the matrix addition.
The inverse of the matrix $\begin{bmatrix}3 & 5 & 7 \ 2 & -3 & 1 \ 1 & 1 & 2\end{bmatrix}$ is $\begin{bmatrix}7 & -3 & 26 \ 3 & 1 & 11 \ -5 & -2 & 0\end{bmatrix}$.
State true or false.
In matrices $AB = O$ does not necessarily mean that
If inverse of $A=\left[ \begin{matrix} 1 & 1 & 1 \ 2 & -1 & -1 \ 1 & -1 & 1 \end{matrix} \right] $ is $\cfrac { -1 }{ 6 } \left[ \begin{matrix} -2 & -2 & 0 \ -3 & 0 & \alpha \ -1 & 2 & -3 \end{matrix} \right] $ then $\alpha=$
Inverse of $\begin{bmatrix}3& 1\5&2\end{bmatrix}$ is:
Let $\displaystyle A=\begin{pmatrix}1 &2 \3 &4
\end{pmatrix}$ and $\displaystyle B=\begin{pmatrix}a &0 \0 &b \end{pmatrix} a,b \epsilon N.$Then
If matrix $A = [a _{ij}] _{2\times 2}$, where $a _{ij} = \left{\begin{matrix} 1,& \ \text{if}\ &i\neq j \ 0, & \ \text{if}\ & i + j\end{matrix}\right.$, then $A^{2}$ is equal to