Tag: properties of multiplication of matrix
Questions Related to properties of multiplication of matrix
If $\left[\begin{array}{ll}
\mathrm{x} & \mathrm{y}^{3}\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 8\
2 & 0
\end{array}\right]$, then $\left[\begin{array}{ll}
\mathrm{x} & \mathrm{y}\
2 & 0
\end{array}\right]^{-1}$ is equal to
$p=$ $\begin{bmatrix}
0 & x &0 \
0& 0 & 1
\end{bmatrix}$, then $p^{-1}$=
A= $\begin{bmatrix}
cos\alpha & -sin\alpha \
sin\alpha & cos\alpha
\end{bmatrix}$ ,then find which of the following are correct
I) A is singular matrix
II) $A^{-1}$=$A^{T}$
III) A is symmetric matrix
IV) $A^{-1}= -A$
If AB=KI where $\displaystyle K\in R$ then $\displaystyle A^{-1}$= _____
If A=$\displaystyle \begin{vmatrix} 5 & -3 \ 4 & 2 \end{vmatrix}$ then find $\displaystyle AA^{-1}$
If $\displaystyle A=\left[ \begin{matrix} \cos { \theta } & \sin { \theta } \ -\sin { \theta } & \cos { \theta } \end{matrix} \right] $, then $\displaystyle \underset { n\rightarrow \infty }{ \lim } \frac { 1 }{ n } { A }^{ n }$ is?
If A is invertible, then which of the following is not true?
Which of the following matrices is not invertible?
If the matrix $\displaystyle \left[ \begin{matrix} a \ c \end{matrix}\begin{matrix} b \ d \end{matrix} \right] $ is commutative with the matrix $\displaystyle \left[ \begin{matrix} 1 \ 0 \end{matrix}\begin{matrix} 1 \ 1 \end{matrix} \right] $, then
Consider two matrix $A = \begin{bmatrix} 1 & 2\ 2 & 1\ 1 & 1 \end{bmatrix}$ and $ B = \begin{bmatrix} 1 & 2 & -4\ 2 & 1 & -4 \end{bmatrix}$. Which one of the following is correct ?