Tag: properties of multiplication of matrix
Questions Related to properties of multiplication of matrix
If $A$ is a square matrix of order $3$ and det $A = 5$, then what is det $[(2A)^{-1}]$ equal to?
If A is a square matrix such that $A^2 = I $ where I is the identity matrix, then what is $A^{-1}$ equal to ?
If A is an orthogonal matrix of order 3 and $B=\begin{bmatrix}1&2&3\-3&0&2\2&5&0\end{bmatrix}$, then which of the following is/are correct?
1. $|AB|= \pm 47$
2. $AB=BA$
Select the correct answer using the code given below :
If A is a non singular matrix satisfying $A=AB-BA$, then which one of the following holds true
If A is a square matrix of order 3,then $|Adj\left( Adj{ A }^{ 2 } \right) |=$
If $AB=0$ for the matrices
$A=\left[ \begin{matrix} \cos ^{ 2 }{ \theta } & \cos { \theta } \sin { \theta } \ \cos { \theta } \sin { \theta } & \sin ^{ 2 }{ \theta } \end{matrix} \right] $ and $B=\left[ \begin{matrix} \cos ^{ 2 }{ \phi } & \cos { \phi } \sin { \phi } \ \cos { \phi } \sin { \phi } & \sin ^{ 2 }{ \phi } \end{matrix} \right] $ then $\theta-\phi $ is
Let $A$ and $B$ are two matrices such that $AB =BA$, then for every $n\in N$,
If $D _1$ and $D _2$ are two $3\times 3$ diagonal matrices, then
if $\begin{bmatrix}2 &1 \ 7 &4 \end{bmatrix}$A$\begin{bmatrix}-3 &2 \ 5 &-3 \end{bmatrix}=\begin{bmatrix}1 &0 \ 0&1 \end{bmatrix}$, then matrix A equals