Tag: physics

Questions Related to physics

The velocity of the transverse waves in a wire of density $8000kg/m^3$ is $300 m/s$. The tensile stress in the wire is then

  1. $7.2\times10^8 N/m^2$

  2. $6.8\times10^8 N/m^2$

  3. $5.2\times10^8 N/m^2$

  4. $8.4\times10^8 N/m^2$


Correct Option: A
Explanation:

Given density = 8000 $kg/{ m }^{ 3 }$ and velocity =300 m/s

Also we know velocity of transverse wave  $\text{V}=\sqrt { \dfrac { T }{ \mu  }  } \text{where T= tension and}\quad \mu =\text{mass per unit lenght}\quad =\dfrac { m }{ L } \quad $
also $\text{Density}\quad \rho =\dfrac { mass }{ Area\times Lenght } \ \rho \times A=\dfrac { m }{ L } $
$\text{Tension T}=\rho A{ V }^{ 2 }$
We know stress $\sigma =\dfrac { Force }{ Area } =\dfrac { Tension }{ Area } =\dfrac { { V }^{ 2 }\rho A }{ A } ={ V }^{ 2 }\rho $
${ 300 }^{ 2 }\times 8000=7.2\times { 10 }^{ 8 }\dfrac { N }{ { m }^{ 2 } } $ 

An external force of $10\ N$ acts normally on a square area of each side $50\ cm$. The stress produced in equilibrium state is

  1. $10\ N/m^{2}$

  2. $20\ N/m^{2}$

  3. $40\ N/m^{2}$

  4. $50\ N/m^{2}$


Correct Option: C

The length of wire is increased by $0.06\%$ by a load of $40N$ whose tensile modulus is $20\times10^{10}N/M^2$.The subjected stress is 

  1. $12\times10^{10}N/m^2$

  2. $1.2\times10^{8}N/m^2$

  3. $120N/m^2$

  4. $1.25\times10^6N/m^2$


Correct Option: B
Explanation:

$\cfrac{\triangle l}{l}\times 100=0.06$

$\implies \cfrac{\triangle l}{l}=\cfrac{0.06}{100}$
Now stress $=\cfrac{20\times 10^{10}\times 0.06}{1000}\=1.2\times 10^8\ N /m^2$

According to $C.E$ van der Waal, the interatomic potential varies with the average interatomic distance $(R)$ as 

  1. $R^{-1}$

  2. $R^{-2}$

  3. $R^{-4}$

  4. $R^{-6}$


Correct Option: D
Explanation:

According to the relation

$ V(r)=\dfrac{-3}{4}\dfrac{{{\alpha }^{2}} _{0}l}{{{(4\pi {{\varepsilon } _{0}})}^{2}}{{R}^{6}}} $

$ V(r)\propto \dfrac{1}{{{R}^{6}}} $

$ V(r)\propto {{R}^{-6}} $


Overall changes in volume and radii of a uniform cylindrical steel wire are $0.2\% $ and $0.002\%$ respectively when subjected to some suitable force. Longitudinal tensile stress acting on the wire is $\left( {Y = 2.0 \times {{10}^{11}}N{m^{ - 2}}} \right)$

  1. $3.2 \times {10^9}N{m^{ - 2}}$

  2. $3.2 \times {10^7}N{m^{ - 2}}$

  3. $3.6 \times {10^9}N{m^{ - 2}}$

  4. $3.6 \times {10^7}N{m^{ - 2}}$


Correct Option: C

A steel wire has an ultimate strength of above $2.0 \times 10 ^ { 7 } \mathrm { kg } - \mathrm { w } \mathrm { J } / \mathrm { m } ^ { 2 }$ . How large a load can a
0.7$\mathrm { cm }$ in diameter steel wire hold before breaking?

  1. $700 \mathrm { kg } - \mathrm { wt }$

  2. $770 \mathrm { kg } - \mathrm { wt }$

  3. $300 \mathrm { kg } - \mathrm { wt }$

  4. None


Correct Option: A

If equal and opposite forces applied to a body tend to elongate it, the stress so produced is called

  1. Tensile stress

  2. Compressive stress

  3. Tangential stress

  4. Working stress


Correct Option: A

A rubber cord 10 m is suspended vertically . How much does is stretch under its own weight (density of rubber is $1500kg{ m }^{ -3 },Y=5\times { 10 }^{ 8 }{ Nm }^{ -2 },g={ ms }^{ -2 }$)

  1. $15\times { 10 }^{ -4 }m\quad $

  2. $7.5\times { 10 }^{ -4 }m\quad $

  3. $12\times { 10 }^{ -4}m $

  4. $25\times { 10 }^{ -4 }m\quad $


Correct Option: B

A copper wire of $1mm$ diameter is stretched by applying a force on $10N$. Find the stress in the wire.

  1. $1.273\times 10^7N/m^2$

  2. $1.373\times 10^7N/m^2$

  3. $1.473\times 10^7N/m^2$

  4. $1.573\times 10^7N/m^2$


Correct Option: A

When the inter molecular distance increases due to tensile force, then 

  1. There is no force between the molecules

  2. There is a repulsive force between the molecules

  3. There is an attractive force between the molecules

  4. There is zero resultant force between the molecules


Correct Option: C