Tag: squares and square roots

Questions Related to squares and square roots

The square root of 0.065 correct to three places of decimal is 0.255
State true or false

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 0.254\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 2)\quad 0.06\quad 50\quad 00\ \quad \quad \quad -0.04\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad 45)\quad \quad \quad 2\quad 50\ \quad \quad -\quad \quad 225\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad 504)\quad \quad \quad 25\quad 00\ \quad \quad -\quad \quad \quad \quad 2016\ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ \quad \quad \quad \quad \quad \quad \quad \quad 484\quad \quad \quad \ \ $

The square root of 82.6 correct to two places of decimal is 9.09
State true or false.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 9.087\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 9)82.60\quad 00\ \quad \quad \quad -81\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 180)\quad 01\quad 60\ \quad \quad -0000\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 1808)\quad 160\quad 00\ \quad \quad -\quad \quad 12864\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \quad \ 19167)\quad \quad \quad \quad \quad 3136\quad 00\quad \ \quad \quad \quad \quad \quad \quad \quad \quad \quad -31129\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \qquad \qquad \qquad \qquad 282471\quad $

State true or false.
The square root of 0.602 correct to two decimal places is 0.78.

  1. True

  2. False


Correct Option: A
Explanation:

$\quad \ \quad \quad \quad \quad \quad 0.77\ \quad \quad \quad \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad 7)\quad 0.60\quad 20\ \quad \quad \quad -0.49\quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ 147)\quad \quad 11\quad 20\ \quad \quad -\quad 1029\quad \quad \downarrow \ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ _ \ \quad \quad \quad \quad \quad 191\quad $

Find the square root of $\displaystyle 1 \frac{5}{16}$  correct to two decimal places

  1. $1.14$

  2. $1.15$

  3. $1.65$

  4. $1.12$


Correct Option: B
Explanation:

 $\displaystyle 1 \dfrac{15}{16}$

$=\dfrac{21}{16}$
$=1.3125$

$1$$1$ $1.3125$$1$
$21$  $1$ $31$$21$
$224$   $4$ $1025$$896$
$2285$ $12900$$11425$                  $1475$

Therefore,
Square root of $\displaystyle 1 \frac{15}{16}=1.145$
                                   $=1.15$

Find the square root of $\displaystyle 6 \frac{7}{8}$ correct to two decimal places 

  1. $2.62$

  2. $2.61$

  3. $2.63$

  4. $2.6$


Correct Option: A
Explanation:

 $\displaystyle 6 \frac{7}{8}$
$=\dfrac{55}{8}$
$=6.875$

$2$$2$ $6.875$$4$
$46$  $6$ $287$$276$
$522$    $1150$$1044$
$6$                  

Therefore,
Square root of $\displaystyle 6 \frac{7}{8}=2.62$
                             

Consider the Following values of the three given number $\displaystyle \sqrt{103},$ $\displaystyle \sqrt{99.35},$ $\displaystyle \sqrt{102.20},$
1.10.1489 (approx,)
2.10.109(approx,)
3.9.967 (approx,)
The correct sequence of the these values matching with the above number is:

  1. 1, 2, 3

  2. 1, 3, 2

  3. 2, 3, 1

  4. 3, 1, 2


Correct Option: B
Explanation:

$\sqrt{3}=10.14889$
$\sqrt{99.35}=9.967$
$\sqrt{102.30}=10.1094$
Hence,The correct sequence of the these values matching with the above number is:1,3,2

$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, ..........}}}\, =\, ..........$   

  1. Equals 1

  2. Lies between 0 and 1

  3. Lies between 1 and 2

  4. Is greater than 2


Correct Option: C
Explanation:

Let 


$x=\sqrt{1+\sqrt{1-----}}$

Squaring both sides

$x^2=1+\sqrt{1+\sqrt{1+\sqrt{1------}}}$

$x^2=1+x$                $(\because x=\sqrt{1+\sqrt{1------}})$

$x^2-x-1=0$

finding roots, we get

$\dfrac{1\pm\sqrt{1+4}}{2}$

$=\dfrac{1\pm\sqrt{5}}{2}$

$=-0.615$ and $1.615$

If $x\, \ast\, y\, =\, \sqrt{x^2\, +\, y^2}$, then the value of $(1^{\ast}\, 2\, \sqrt{2})(1^{\ast}\, - 2\, \sqrt{2})$ is:  

    • 7
  1. 0

  2. 2

  3. 9


Correct Option: D
Explanation:

$1^{\ast} 2 \sqrt{2}\, =\, \sqrt{(1)^2\, +\, (2 \sqrt{2}^2}\, =\, \sqrt{1\, +\, 8}\, =\, 3$

$1^{\ast} -2 \sqrt{2}\, =\, \sqrt{(1)^2\, +\, (-2 \sqrt)^2}\, =\, \sqrt{1\, +\, 8}\, =\, 3$

$(1\, \ast\, 2 \sqrt{2})(1\, \ast\, -2 \sqrt{2})\, =\, (3)(3)\, =\, 9$

$\displaystyle \frac{\sqrt{32}\, +\, \sqrt{48}}{\sqrt{8}\, +\, \sqrt{12}}\, =\, ?$

  1. $\sqrt{2}$

  2. 2

  3. 4

  4. 8


Correct Option: B
Explanation:
$ {\cfrac{\sqrt{32} + \sqrt{48}}{\sqrt{8} + \sqrt{12}} = \cfrac{\sqrt{16 \times 2} + \sqrt{16 \times 3}}{\sqrt{4 \times 2} + \sqrt{4 \times 3}}}$

$= \cfrac{4\sqrt{2} + 4\sqrt{3}}{2\sqrt{2} + 2\sqrt{3}}$

$ = \cfrac{4 \left (\sqrt{2} + \sqrt{3} \right )}{2 \left (\sqrt{2} + \sqrt{3} \right )}$

$ = 2$

If $\sqrt{2}\, =\, 1.4142,$ then the value of $\displaystyle \frac{2}{9}$ is

  1. 0.2321

  2. 0.4714

  3. 0.3174

  4. 0.4174


Correct Option: B
Explanation:

$\displaystyle {\sqrt {\frac{2}{9}}\, =\, \frac{\sqrt{2}}{\sqrt{9}}\, =\, \frac{\sqrt{2}}{3}\, =\, \frac{1.4142}{3}\, =\, 0.4714.}$