Tag: squares and square roots

Questions Related to squares and square roots

$\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}\, =\, ?$

  1. 0

  2. 1

  3. 2

  4. $2^{31/32}$


Correct Option: D
Explanation:

$\sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{1/2}}}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{(2\, \times\, 2^{3/4})}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{7/8}}}\, =\, \sqrt{2\, \times\, 2^{15/16}}\, =\, 2^{31/32}$

By using the table for square root find the value of $\sqrt{7}$.

  1. $2.652$

  2. $2.746$

  3. $2.646$

  4. $2.616$


Correct Option: C
Explanation:

The sqaure root of $\sqrt 7$ is $2.646$

By using the table for square root find the value of
$13.21$
$21.97$

  1. 3.63, 4.60

  2. 3.63, 4.69

  3. 3.53, 4.69

  4. 3.63, 4.19


Correct Option: B
Explanation:

(i)

From square root table, Square root of 13.21 is:

 √13.21 = 3.6345

Therefore,

The square root of 13.21 is 3.63

(ii) From square root table, Square root of 21.97 is:

 √21.97 = 4.687

Therefore,

The square root of 21.97 is 4.69

Find the square root of $10$, correct to four places of decimal.

  1. 3.4623

  2. 3.1023

  3. 3.1693

  4. 3.1623


Correct Option: D
Explanation:
$3.16227$
$3$$+3$ $10$$9$
$61$$+1$ $100$$61$
$626$$+6$ $3900$$3756$
$6322$$+2$ $14400$$12644$
$63242$$+2$-------------$632447$ $175600$$126484$---------------$4911600$$4427129$

$\sqrt{10}=3.16227\simeq 3.1623$
$\therefore$ The square root of $10$ correct to four places of decimal is $3.1623$

The square root of $\displaystyle \frac{\left ( 3\frac{1}{4} \right )^{4}-\left ( 4\frac{1}{3} \right )^{4}}{\left ( 3\frac{1}{4} \right )^{2}-\left ( 4\frac{1}{3} \right )^{2}}$ is

  1. $\displaystyle 7\frac{5}{12}$

  2. $\displaystyle 7\frac{7}{12}$

  3. $\displaystyle 5\frac{5}{12}$

  4. $\displaystyle 5\frac{7}{12}$


Correct Option: C
Explanation:

$\frac{\left ( 3\tfrac{1}{4} \right )^{4}-\left ( 4\tfrac{1}{3} \right )^{4}}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$

=$\frac{\left [ \left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2} \right ]\left [ \left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2} \right ]}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$
=$\left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2}$
=$\left ( \frac{13}{16} \right )^{2}+\left ( \frac{13}{9} \right )^{2}=169\times \left ( \frac{9+16}{144} \right )=169\times\frac{25}{144}$ 
Then squire root =$\frac{13\times 5}{12}=\frac{65}{12}$=$5\frac{5}{12}$

Estimate: $\sqrt { 60 } $

  1. $7.7$

  2. $7$

  3. $7.2$

  4. $7.5$


Correct Option: A
Explanation:

$60$ is in between two perfect squares: $49$, which is ${7}^{2}$ and $64$ which is ${8}^{2}$. The difference between $64$ and $49$ is $15$ so $60$ is little more than $\cfrac{2}{3}$ of the way toward $64$ from $49$. A reasonable estimate for $\sqrt {60}$, then would be about $7.7$ which is a little more than $\cfrac{2}{3}$ toward $8$ from $7$.

If $\sqrt{0.01+\sqrt{0.0064}}=x$, then the value of $x$ is ____________.

  1. $0.3$

  2. $0.03$

  3. $\sqrt{0.18}$

  4. None of these


Correct Option: A
Explanation:

Given, $\sqrt{0.01+\sqrt{0.0064}}=x$

Taking square of both sides.
$0.01+\sqrt{0.0064}=x^2$
We know that $\sqrt{0.0064}=0.08$
So, $x^2=0.08+0.01$
$x^2=0.09$
$x=0.3$

The square root of $\displaystyle\frac{36}{5}$ correct to two decimal places is _____________.

  1. $2.68$

  2. $2.69$

  3. $2.67$

  4. $2.66$


Correct Option: A
Explanation:

We know $\sqrt{\dfrac{36}{5}}=\dfrac {6}{\sqrt 5}$

$=\dfrac{6}{2.236}$
$=2.6833$
Upto two decimal places:
$=2.68$

Which of the following is not a perfect square?

  1. $16384$

  2. $23857$

  3. $18496$

  4. $11025$


Correct Option: B
Explanation:

$16384= 128\times 128$         (perfect square)

$18496=136\times 136$           (perfect square)
$11025=105\times 105$         (perfect square)
$23857 = 1\times  23857$        (prime no. so not a perfect square)
Hence, option B is correct.

The number that must be subtracted from $16161$ to get a perfect square is ________.

  1. $31$

  2. $32$

  3. $33$

  4. $34$


Correct Option: B
Explanation:

Let the number is $x$

Finding the square root of $16161$
$\sqrt{16161}=127.1259$

Finding the square of $127$
$127^2=16129$
$x=16161-16129$
$x=32$