Tag: squares and square roots

Questions Related to squares and square roots

Find the square of the following number without multiplication.

46

  1. 2116

  2. 2002

  3. 2424

  4. 1988


Correct Option: A
Explanation:

${46}^{2} = 46\times46 = 2116$

If sin$\theta -cosec  \theta =\sqrt{5},$ then the value of sin  $\theta  + cosec  \theta$ is:

  1. $\sqrt{3}$

  2. 1

  3. 3

  4. 9


Correct Option: C
Explanation:

$\Rightarrow \sin\theta-cosec\theta=\sqrt{5}$


$\Rightarrow \sin\theta-\dfrac{1}{\sin\theta}=\sqrt{5}$      $(\because cosec\theta=\dfrac{1}{\sin\theta})$

$\Rightarrow \sin^2\theta-\sqrt{5}\sin\theta-1=0$

Solving equation to get roots.

$\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{\pm3+\sqrt{5}}{2}$ (substitute values to get roots)

To find:-

$\sin\theta+cosec\theta$

Using $\dfrac{3+\sqrt{5}}{2}$

$=\dfrac{3+\sqrt{5}}{2}+\dfrac{2}{3+\sqrt{5}}$

$=\dfrac{(3+\sqrt{5})^2+4}{2(3+\sqrt{5})}$

$=\dfrac{9+4+5+6\sqrt{5}}{2(3+\sqrt{5})}$

$=\dfrac{6(3+\sqrt{5})}{2(3+\sqrt{5})}$

$=3$


Using $\dfrac{-3+\sqrt{5}}{2}$

$=\dfrac{-3+\sqrt{5}}{2}+\dfrac{2}{-3+\sqrt{5}}$

$=\dfrac{(-3+\sqrt{5})^2+4}{2(-3+\sqrt{5})}$

$=\dfrac{9+4+5-6\sqrt{5}}{2(-3+\sqrt{5})}$

$=\dfrac{-6(-3+\sqrt{5})}{2(-3+\sqrt{5})}$

$=-3$


According to option answer is $3$

If $a+b+c=6$ and $ ab+bc+ca = 11 $
Find $\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)$ ?
  1. $14$

  2. $25$

  3. $36$

  4. $47$


Correct Option: A
Explanation:
Given $a+b+c=6$ 

$(a+b+c)^2=36$

$(a^2+b^2+c^2)+2(ab+ba+ca)=36$

$a^2+b^2+c^2+(2\ast 11)=36$

$a^2+b^2+c^2=36-22=14$

Evaluating the following :
$(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$

  1. $1718\sqrt 3$

  2. $1718\sqrt 2$

  3. $1178\sqrt 3$

  4. $1178\sqrt 2$


Correct Option: D
Explanation:

Given term is $(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$


$\Rightarrow 2\left[\ ^{5}C _{1}\times 3^{4}\times (\sqrt{2})^{1}+\ ^{5}C _{3}\times 3^{2}\times (\sqrt{2})^{3}+\ ^{5}C _{5}\times 3^{0}\times (\sqrt{2})^{5}\right]$

$\Rightarrow 2\left[5\times 81\times\sqrt{2}+10\times 9\times 2\sqrt{2}+4\sqrt{2}\right]$

$\Rightarrow 2\sqrt{2}(405+180+4)$

$\Rightarrow 1178\sqrt{2}$

Evaluating the following :
$(1+2\sqrt{x})^{5}+(1-2\sqrt{x})^{5}$

  1. $2(1+40x^2+80x)$

  2. $2(1-40x+81x^2)$

  3. $2(1+40x+80x^2)$

  4. None of these


Correct Option: C
Explanation:
Given to evaluate is $(1+2\sqrt x)^5 +(1-2\sqrt x)^5$

$\Rightarrow 2[^{5}C _{0} (2\sqrt x)^0 +^5C _2 (2\sqrt x)^2 +^5C _4 (2\sqrt x)^4]$

$\Rightarrow 2[1+10\times 4x+5\times 16x^2]$

$\Rightarrow 2[1+40x+80x^2]$

Find the square root by guessing the units and tens digit:
$2116$
  1. $46$

  2. $50$

  3. $52$

  4. $58$


Correct Option: A
Explanation:

Its unit digit is 6 and tens digit is 1


For unit digit 6 , there are two possibilities either the square root end with 6 or 4

And according to options $46$ is the correct option

The number which exceeds its positive square root by $12$ is

  1. $9$

  2. $16$

  3. $25$

  4. None of these


Correct Option: B
Explanation:
Let the positive number be x according to question,

$\sqrt{x}+12=x$

$\Rightarrow \sqrt{x}=x-12$

Squaring both sides,

$\Rightarrow x=x^{2}-24x+144$

$x^{2}-25x+144=0$

$x^{2}-16x-9x+144=0$

$x(x-16)-9(x-16)=0$

$(x-9)(x-16)=0$

 $  (x-9)=0 $ or $    (x-16)=0 $

 $ x=9 $  or $ x=16 $

So, the number is $16$.

Find the square root of which of the following numbers will be the least :

  1. $7\dfrac{58}{81}$

  2. $11\dfrac{14}{25}$

  3. $10\dfrac{1}{36}$

  4. $0.3481$


Correct Option: D
Explanation:

$A.$


$7\dfrac{58}{81}=\dfrac{625}{81}$


$\Rightarrow$  $\sqrt{\dfrac{625}{81}}=\dfrac{25}{9}=2.77$

$B.$

$11\dfrac{14}{25}=\dfrac{289}{25}$

$\Rightarrow$  $\sqrt{\dfrac{289}{25}}=\dfrac{17}{5}=3.4$

$C.$

$10\dfrac{1}{36}=\dfrac{361}{36}$

$\Rightarrow$  $\sqrt{\dfrac{361}{36}}=\dfrac{19}{6}=3.16$

$D.$

$0.3481=\dfrac{3481}{10000}$

$\Rightarrow$  $\sqrt{\dfrac{3481}{10000}}=\dfrac{59}{100}=0.59$

$\therefore$  We can see, $0.3481$  has least square root.

Simlify: $\sqrt{\dfrac{-17}{144}-i}$

  1. $ \pm \left( {\dfrac{3}{2} - \dfrac{i}{3}} \right)$

  2. $ \pm \left( {\dfrac{3}{4} - \dfrac{{2i}}{3}} \right)$

  3. $ \pm \left( {\dfrac{3}{5} - \dfrac{{5i}}{6}} \right)$

  4. $ \pm \left( {\dfrac{2}{3} - \dfrac{{3i}}{4}} \right)$


Correct Option: D
Explanation:

We know that,

${{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab$

 

Now, let,

$ -2ab=-i $

$ ab=i $

 

Now, consider $\dfrac{-17}{144}$. We can write it as,

$\dfrac{-17}{144}=\dfrac{64-81}{9\times 16}=\dfrac{4}{9}-\dfrac{9}{16}$

 

Thus,

$ \sqrt{\dfrac{-17}{144}-i}=\sqrt{\dfrac{4}{9}-\dfrac{9}{16}-i} $

$ =\sqrt{{{\left( \dfrac{2}{3} \right)}^{2}}+{{\left( i \right)}^{2}}{{\left( \dfrac{3}{4} \right)}^{2}}-2\times \left( \dfrac{2}{3} \right)\times \left( \dfrac{3i}{4} \right)} $

$ =\sqrt{{{\left( \dfrac{2}{3}-\dfrac{3i}{4} \right)}^{2}}} $

$ =\pm \left( \dfrac{2}{3}-\dfrac{3i}{4} \right) $

 

Hence, this is the required result.

The approximate value of$\sqrt { { \left( 1.97 \right)  }^{ 2 }{ \left( 4.02 \right)  }^{ 2 }{ \left( 3.98 \right)  }^{ 2 } }$

  1. $31.59 $

  2. $5.099$

  3. $5.009$

  4. $5.734$


Correct Option: A
Explanation:

We have,

$ \sqrt{{{\left( 1.97 \right)}^{2}}{{\left( 4.02 \right)}^{2}}{{\left( 3.98 \right)}^{2}}} $

$ =1.97\times 4.02\times 3.98 $

$ =31.59 $

Hence, this is the answer.