Tag: squares and square roots

Questions Related to squares and square roots

Find the square root correct upto $2$ decimals $60.92$.

  1. $7.92$

  2. $7.81$

  3. $7.27$

  4. $7.56$


Correct Option: B
Explanation:
$\sqrt{6092}$

$=\sqrt{\dfrac{6092}{100}}$

$=\dfrac{78.05}{10}$

$=7.81$

The positive square root of $( \sqrt { 48 } - \sqrt { 45 } )$ is _________.

  1. $\frac { \sqrt [ 4 ] { 3 } } { \sqrt { 2 } } ( \sqrt { 5 } - \sqrt { 3 } )$

  2. $\frac { \sqrt [ 4 ] { 3 } } { 2 } ( \sqrt { 5 } - \sqrt { 3 } )$

  3. $\frac { \sqrt { 2 } } { \sqrt [ 4 ] { 3 } } ( \sqrt { 5 } - \sqrt { 3 } )$

  4. $\frac { \sqrt [ 4 ] { 3 } } { \sqrt { 2 } } ( \sqrt { 5 } + \sqrt { 3 } )$


Correct Option: A
Explanation:

Solving $(\sqrt{48}-\sqrt{45})$

$4\sqrt{3}-3\sqrt{5}$

$\dfrac{\sqrt{3}}{2}(8-2\sqrt{15})$

$\dfrac{\sqrt{3}}{2}(3+5-2\sqrt{15})$

$\dfrac{\sqrt{3}}{2}(\sqrt{3^2}+\sqrt{5^2}-2\sqrt{5}\times\sqrt{3})$

$\dfrac{\sqrt3}{2}(\sqrt5-\sqrt3)^2$

$Now \ Finding\ Square \ Root$

$\pm{ \dfrac{3^{\frac{1}{4}}}{\sqrt2}(\sqrt5-\sqrt3)}$

$So \ it's \ positive \ root \ is \ $$ \dfrac{3^{\frac{1}{4}}}{\sqrt2}(\sqrt5-\sqrt3)$
Correct Answer is $A$

If $\sqrt{2}=1.414$ then the value of $\sqrt{8}$ is

  1. $2.828$

  2. $1.828$

  3. $2.282$

  4. $2.288$


Correct Option: A
Explanation:
$\sqrt{2}=1.414$(given)
$\sqrt{8}=\sqrt{2\times 2\times 2}=2\sqrt{2}=2\times 1.414=2.828$
$\therefore \sqrt{8}=2.828$

Find the square root of 
$5-2\sqrt{6}$

  1. $\sqrt{13}-\sqrt{2}$

  2. $\sqrt{3}-\sqrt{2}$

  3. $\sqrt{5}-\sqrt{3}$

  4. $\sqrt{5}-\sqrt{2}$


Correct Option: B
Explanation:

$5-2\sqrt{6}=3+2-2\sqrt{6}$


$=({\sqrt{3}})^2+({\sqrt{2}})^2-2\sqrt{3}\times \sqrt {2}$

Using $(a-b)^2=a^2+b^2-2ab$


${5-2\sqrt{6}}=(\sqrt{3}-\sqrt{2})^2$

$\sqrt {5-2\sqrt{6}}=(\sqrt{3}-\sqrt{2})$

$So, \  the \  square \  root \  of \  (5-2\sqrt{6})=\sqrt{3}-\sqrt{2}$

$\sqrt{(a - b)^2} + \sqrt{(b - a)^2}$ is

  1. Always zero

  2. Never zero

  3. Positive if and only if a > b

  4. Positive only if a $\ne$ b


Correct Option: D
Explanation:

$\sqrt{(a - b)^2} + \sqrt{(b - a)^2}$
$= |a - b| + |b - a|$

Now, If $a > b$
$= a - b + a - b$
$= 2a - 2b$...+ ve

If $b > a$
$= b - a + b - a$
$= 2b - 2a$...+ ve
Therefore, if $a \ne b$ then the given equation is always positive.
Hence, option 'D' is correct.

The value of $\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}$ is close to .......... .

  1. 0.6

  2. 1.1

  3. 1.6

  4. 1.7


Correct Option: C
Explanation:

$\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}\, =\, \displaystyle \frac{1\, +\, 0.1}{1\, -\, 0.32}\, =\, \displaystyle \frac{1.1}{0.68}\, =\, 1.6$

If $\sqrt{6}\, =\, 2.55,$ then the value of $\displaystyle {\sqrt{\frac{2}{3}\, +\, 3\frac{3}{2}}}$ is

  1. 4.48

  2. 4.49

  3. 4.50

  4. None of these


Correct Option: D
Explanation:
$ {\sqrt{\cfrac{2}{3} + 3\cfrac{3}{2}}}$
$=  {\cfrac{\sqrt{2}}{\sqrt{3}} \times \cfrac{\sqrt{3}}{\sqrt{3}} + 3 \times \cfrac{\sqrt{3}}{\sqrt{2}} \times \cfrac{\sqrt{2}}{\sqrt{2}}}$
$=  {\cfrac{\sqrt{6}}{3} + \cfrac{3\sqrt{6}}{2} = \cfrac{2.55}{3} + \cfrac{3 \times 2.55}{2}}$
$=  {\cfrac{2.55}{3} + \cfrac{7.65}{2} = \cfrac{5.10 + 22.95}{6}}$
$=  \cfrac{28.05}{6} = 4.675$

$\displaystyle {\sqrt{\frac{4}{3}}\, -\, \sqrt{\frac{3}{4}}\, =\, ?}$

  1. $\displaystyle \frac{1}{2\sqrt{3}}$

  2. $\displaystyle - \frac{1}{2\sqrt{3}}$

  3. 1

  4. $\displaystyle \frac{5\sqrt{3}}{6}$


Correct Option: A
Explanation:

$\displaystyle {\frac{\sqrt{4}}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{4}} = \frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2} = \frac{4 - 3}{2\sqrt{3}} = \frac{1}{2\sqrt{3}}}$

If $\sqrt{75.24\, +\, x}\, =\, 8.71,$ then the value of x is

  1. 0.6241

  2. 6.241

  3. 62.41

  4. None of these


Correct Option: A
Explanation:
$\sqrt{75.24\, +\, x}\, =\, 8.71$        ...Given
Squaring on both sides, we get
$75.24 + x = 8.71 \times 8.71$
$\Rightarrow x=8.71^2-75.24$
$ \Rightarrow x = 0.6241$

If $\sqrt{3}\, =\, 1.732,$ then the approximate value of $\displaystyle \frac{1}{\sqrt{3}}$ is

  1. 0.617

  2. 0.313

  3. 0.577

  4. 0.173


Correct Option: C
Explanation:

$ {\cfrac{1}{\sqrt{3}} = \cfrac{1}{\sqrt{3}} \times \cfrac{\sqrt{1}}{\sqrt{3}} = \cfrac{\sqrt{1}}{3} = \cfrac{1.732}{3} = 0.577}$