Tag: applications of matrices and determinants

Questions Related to applications of matrices and determinants

If $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$, then $x = $ ............ 

  1. $ \dfrac{a+b+ c}{3}$

  2. $ \dfrac{a + \omega^2 b + \omega c}{3}$

  3. $\dfrac{a + \omega b + \omega^2 c}{3}$

  4. $\dfrac{a+b+ c \omega}{3}$


Correct Option: A
Explanation:

Given $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$.

Adding all the given equations gives

$3x+y(1+\omega+\omega^2)+z(1+\omega+\omega^2)=a+b+c$

$\Rightarrow 3x=a+b+c$     $\because 1+\omega+\omega^2=0$

$\therefore x=\displaystyle\frac{a+b+c}{3}$

Hence, option A.

If $f(x) = ax^2 + bx + c, a, b, c \in  R$ and equation $f(x)- x = 0$ has non-real roots $\alpha, \beta$.  Let $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$ ($\gamma, \delta$ are not equal to $\alpha, \beta$). Then $\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is

  1. 0

  2. purely real

  3. purely imaginary

  4. none of these


Correct Option: B
Explanation:

$f(x) = ax^2 + bx + c; a, b, c \in  R$ and equation $f(x)- x = 0$ has imaginary roots $\alpha, \beta$ and $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$
since $\alpha,\beta$ are roots of $f(x)- x = 0$
$f(\alpha)-\alpha =0$ $\Rightarrow f(\alpha)=\alpha$
$f(\beta)-\beta=0$ $\Rightarrow f(\beta)=\beta$
$f(f(\alpha))-\alpha = f(\alpha)-\alpha =0$
$f(f(\beta))-\beta = f(\beta)-\beta =0$
$\therefore  \alpha,\beta$ are also roots of $f(f(x)) - x = 0$ ------(*)
$f(x)- x= ax^2+(b-1)x+c=0$
roots are imaginary.
i.e $\alpha,\beta$ are conjugate to each other and $D<0$
$\Rightarrow (b-1)^2-4ac<0$ -------(1)
$f(f(x)) - x = a(ax^2+bx+c)^2+b(ax^2+bx+c)+c-x=0$
$\Rightarrow \left(ax^2+(b-1)x+c\right)\left(a^2x^2+(ab+a)x+ac+b+1\right)=0$
$D=(ab+a)^2-4a^2(ac+b+1) = a^2\left((b-1)^2-4ac\right)-4a^2<0$    ($\because$ from (1))
$\therefore \gamma,\delta$ are also imaginary roots and conjugate to each other.
$\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ $= -3\alpha\beta+\alpha^2\gamma+\beta^2\delta$ ------ (2)
$\alpha\beta$ is real
$\alpha^2\gamma$ is conjugate to $\beta^2\delta$
$\Rightarrow \alpha^2\gamma+\beta^2\delta$ is real
from (2)
$\therefore \begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is purely real.
Hence, option B.


If $\displaystyle \omega$ is cube root of unity and $\displaystyle x + y + z = a$, $\displaystyle x + \omega y + \omega^{2} z = b$, $\displaystyle x + \omega^{2} y + \omega z = b$ then which of the following is not correct?

  1. $\displaystyle x = \frac{a + b + c}{3}$

  2. $\displaystyle y = \frac{a + b \omega^{2} + \omega c}{3}$

  3. $\displaystyle x = \frac{a + b \omega + \omega^{2} c}{3}$

  4. None of these


Correct Option: D
Explanation:

Given $x+y+z=a $...(i)

$\displaystyle x+\omega y+\omega ^{2}z= b$ ...(ii)

$\displaystyle x+\omega ^{2}y+\omega z= c$ ...(iii)

By adding (i), (ii) and (iii), we get

$\displaystyle x= \frac{a+b+c}{3}$

Hence option A is correct.

Again $\displaystyle \left ( i \right )+\left ( ii \right )\times \omega ^{2}+\left ( iii \right )\times \omega $, we get

$\displaystyle 3y= a\omega ^{3}+b\omega ^{2}+c\omega$

$\displaystyle y= \frac{a+b\omega ^{2}+c\omega }{3}$

Hence, option B is correct.

Similarly, $\displaystyle \left ( i \right )+\left ( ii \right )\times \omega +\left ( iii \right )\times \omega ^{2}$ we get

$\displaystyle z= \frac{a+b\omega +c\omega ^{2}}{3}$

Hence, option C is correct

Consider the system of equations $x-2y+3z=-1,
-x+y-2z=k , x-3y+4z=1$ 

STATEMENT - 1 : The system of equations has no solutions for $k\neq 3$ and 
STATEMENT - 2 : The determinant $\begin{vmatrix}
1 & 3 & -1\
-1 & -2& k\
1& 4& 1
\end{vmatrix}$ $\neq 0$ for $k\neq 3$ 

  1. Statement-1 is true, statement - 2 is true,

    statement - 2 is a correct explanation for

    statement -

  2. Statement -1 is true, statement - 2 is true,

    statement -2 is a not a correct explanation for

    statement - 1

  3. Statement -1 is true, statement -2 is false

  4. Statement -1 is false, statement - 2 is true


Correct Option: A
Explanation:

For the solution of the system of equations
$x - 2y + 3z = -1$
$-x + y - 2z = 2$
$kx - 3y + 4z = 1$, 
$\begin{bmatrix}
1 &-2  &3 \ 
-1 &1  &-2 \ 
k &-3  &4 
\end{bmatrix} 
$
If determinant of the matrix is zero than the given lines are coplanar and if the determinant is non zero the they are non co-planar.
The solution for the system of equations exist when the lines are coplanar.
Hence, $1(-2 - 4k) - 3(-1 - k) -1(-4 + 2) \neq 0$
$\Rightarrow -2 - 4k + 3 + 3k + 2 \neq 0$
i.e. $k \neq 3$

The values of $\theta $ lying between $\theta =0$ and $\theta =\dfrac {\pi}{2}$ and satisfying the equation
$\begin{vmatrix}
1+\sin ^{2}\theta  & \cos ^{2}\theta  & 4\sin 6\theta \
\sin ^{2}\theta  & 1+\cos ^{2}\theta  & 4\sin 6\theta \
\sin ^{2}\theta  & \cos ^{2}\theta  & 1+4\sin 6\theta
\end{vmatrix}$
are given by

  1. $\dfrac {\pi }{36}, \dfrac{5\pi}{ 36}$

  2. $\dfrac{7\pi}{36}, \dfrac{11\pi}{3}$

  3. $\dfrac{5\pi }{36}, \dfrac{7\pi }{36}$

  4. $\dfrac{11\pi}{36}, \dfrac{\pi }{36}$


Correct Option: B
Explanation:

$\begin{vmatrix} 1+\sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ \sin ^{ 2 } \theta  & 1+\cos ^{ 2 } \theta  & 4\sin  6\theta  \ \sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 1+4\sin  6\theta  \end{vmatrix}=0$

Applying ${ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 1 },{ R } _{ 2 }\rightarrow { R } _{ 2 }-{ R } _{ 1 }$

$\Rightarrow \begin{vmatrix} 1+\sin ^{ 2 } \theta  & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ -1 & 1 & 0 \ -1 & 0 & 1 \end{vmatrix}=0$

Applying ${ C } _{ 1 }\rightarrow { C } _{ 1 }+{ C } _{ 2 }$

$\Rightarrow \begin{vmatrix} 2 & \cos ^{ 2 } \theta  & 4\sin  6\theta  \ 0 & 1 & 0 \ -1 & 0 & 1 \end{vmatrix}=0\ \Rightarrow 2+4\sin  6\theta =0\Rightarrow \sin  6\theta =-\cfrac { 1 }{ 2 } \ \Rightarrow 6\theta =n\pi +{ \left( -1 \right)  }^{ n }\left( -\cfrac { \pi  }{ 6 }  \right) \ \Rightarrow \theta =\cfrac { n\pi  }{ 6 } +{ \left( -1 \right)  }^{ n+1 }\left( \cfrac { \pi  }{ 36 }  \right) \ \Rightarrow \theta =\cfrac { 7\pi  }{ 36 } ,\cfrac { 11\pi  }{ 36 } $

If $ \displaystyle a+b+c=0$ then value of $ \displaystyle (s) $ of $x$ which makes $\displaystyle \begin{vmatrix}
a-x &c  &b \
 c&b-x  &a \
b & a &c-x
\end{vmatrix}$ zero is (are)

  1. $\displaystyle x=0 $

  2. $\displaystyle x=\sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

  3. $\displaystyle x=- \sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

  4. None of these


Correct Option: A,B,C
Explanation:

Applying $\displaystyle R _{1}\rightarrow R _{1}+R _{2}+R _{3}$ and taking $\displaystyle a+b+c-x $ common from the first row, we obtain
$\displaystyle \Delta =\left ( a+b+c-x \right )\begin{vmatrix}
1 &1  &1 \ 
c &b-x  &a \ 
b &a  &c-x 
\end{vmatrix}$
Applying  $\displaystyle C _{2}\rightarrow C _{2}-C _{1}$ and $\displaystyle C _{3}\rightarrow C _{3}-C _{1}$ we obtain
$\displaystyle \Delta =\begin{vmatrix}
1 &0  &0 \ 
c &b-c-x  &a-c \ 
b &a-b  &c-b-x 
\end{vmatrix}\left [ \because a+b+c=0 \right ]$
Expanding along $\displaystyle R _{1}$ we get
$\displaystyle \Delta =x\left [ \left ( b-c-x \right )\left (c-b-x  \right )-\left ( a-b \right )\left ( a-c \right ) \right ] $
$\displaystyle \Delta =x\left [ \left ( a-b \right )\left (a-c  \right )-\left ( x+b-c\right )\left ( x-b+c \right ) \right ] $
$\displaystyle  =x\left [ a^{2}-ab-ac+bc-x^{2}+b^{2}+c^{2}-2bc \right ]$
$\displaystyle \Delta =x\left [ a^{2}+b^{2}+c^{2}-bc-ab-ac-x^{2} \right ]$
$\displaystyle \Delta =0$ implies $\displaystyle x =0$ or $\displaystyle x^{2}=a^{2}+b^{2}+c^{2}-bc-ab-ac$
Now $\displaystyle x^{2}=a^{2}+b^{2}+c^{2}-bc-ab-ac$
$\displaystyle =a^{2}+b^{2}+c^{2}-\frac{1}{2}\left [ \left ( a+b+c \right )^{2}- a^{2}-b^{2}-c^{2} \right ]$
$\displaystyle =\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )\left [ \because a+b+c=0 \right ]$
$\displaystyle \Rightarrow x= \pm \sqrt{\frac{3}{2}\left ( a^{2}+b^{2}+c^{2} \right )}$

Consider the system of equations:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
$\alpha^2 x+\beta^2 y+\gamma^2 z=0$
Then the system of equations has

  1. A unique solution for all values $\alpha, \beta, \gamma$

  2. Infinite number of solutions if any two of $\alpha,\beta, \gamma$ are equal

  3. A unique solution if $\alpha, \beta, \gamma$ are distinct

  4. More than one, but finite number of solutions depending on values of $\alpha, \beta, \gamma$


Correct Option: B,C
Explanation:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
${ \alpha  }^{ 2 }x+{ \beta  }^{ 2 }y+{ \gamma  }^{ 2 }z=0$
$\triangle =\begin{vmatrix} 1 & 1 & 1 \\ \alpha  & \beta  & \gamma  \\ { \alpha  }^{ 2 } & { \beta  }^{ 2 } & { \gamma  }^{ 2 } \end{vmatrix}$
If any of the two values $\left( \alpha ,\beta  \right) $ or $\left( \alpha ,\gamma  \right) $ or $\left( \beta ,\gamma  \right) $ are equal then $\triangle =0$
Infinite solution
Option B
For all different values of $\alpha ,\beta ,\gamma $
$\triangle \neq 0$
Unique solution
Option C

The following system of equations
$x+y+z=1$
$2x+2y+2z=3$
$3x+3y+3z=4$ has

  1. infinite number of solutions

  2. no solution

  3. unique solution

  4. finitely many solutions

  5. none of these


Correct Option: B
Explanation:

$D=\begin{vmatrix}1 &1  &1 \ 2 & 2 & 2\ 3 & 3 & 3\end{vmatrix}=0$
$D _1=0,$     $D _2=0$,      $D _3=0$
Let $z=t$
$x+y=1-t$
$2x+2y=3-2t$
Since both the lines are parallel hence no value of x and y
Hence there is no solution of the given equations.

Let $S$ be the set of all column matrices $\begin{bmatrix}b _{1}\b _{2} \ b _{3}
\end{bmatrix}$ such that $b _{1}, b _{2}, b _{3} \  \epsilon \  \mathbb {R}$ and the system of equation (in real variables) 
$-x + 2y + 5z = b _{1}$
$2x - 4y + 3z = b _{2}$
$x - 2y + 2z = b _{3}$
has at least one solution. Then, which of the following system(s) (in real variables) has/have at least one solution of each $\begin{bmatrix}b _{1}\ b _{2}\ b _{3}
\end{bmatrix}\epsilon \  S$?

  1. $x + 2y + 3z = b _{1}, 4y + 5z = b _{2}$ and $x + 2y + 6z = b _{3}$

  2. $x + y + 3z = b _{1}, 5x + 2y + 6z = b _{2}$ and $-2x - y - 3z = b _{3}$

  3. $-x + 2y - 5z = b _{1}, 2x - 4y + 10z = b _{2}$ and $x - 2y + 5z = b _{3}$

  4. $x + 2y + 5z = b _{1}, 2x + 3z = b _{2}$ and $x + 4y - 5z = b _{3}$


Correct Option: A,C,D
Explanation:

We find $D = 0$, where $D$ is the determinant formed by the coefficients of $x,\ y,\ z$ in the three equations and since no pair of planes are parallel, so there is an infinite number of solutions.
Let $\alpha P _{1} + \lambda P _{2} = P _{3}$
$\Rightarrow P _{1} + 7P _{2} = 13P _{3}$
$\Rightarrow b _{1} + 7b _{2} = 13b _{3}$
(A) $D\neq 0\Rightarrow$ unique solution for any $b _{1}, b _{2}, b _{3}$
(B) $D = 0$ but $P _{1} + 7P _{2} \neq 13P _{3}$
(C) $D = 0$ Also $b _{2} = -2b _{1}, b _{3} = -b _{1}$
Satisfied $b _{1} + 7b _{2} = 13b _{3}$ (Actually all three planes are co-incident)
(D) $D\neq 0$.

If $a{ e }^{ x }+b{ e }^{ y }=c;\quad p{ e }^{ x }+q{ e }^{ y }=d$ and $\quad { \Delta  } _{ 1 }=\begin{vmatrix} a & b \ p & q \end{vmatrix};{ \Delta  } _{ 2 }=\begin{vmatrix} c & b \ d & q \end{vmatrix};{ \Delta  } _{ 3 }=\begin{vmatrix} a & c \ p & d \end{vmatrix}$ then the value of $(x,y)$ is:

  1. $\left( \cfrac { { \Delta } _{ 2 } }{ { \Delta } _{ 1 } } ,\cfrac { { \Delta } _{ 3 } }{ { \Delta } _{ 1 } } \right) $

  2. $\left( \log { \cfrac { { \Delta } _{ 2 } }{ { \Delta } _{ 1 } } } ,\log { \cfrac { { \Delta } _{ 3 } }{ { \Delta } _{ 1 } } } \right) $

  3. $\left( \log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 3 } } } ,\log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 2 } } } \right) $

  4. $\left( \log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 2 } } } ,\log { \cfrac { { \Delta } _{ 1 } }{ { \Delta } _{ 3 } } } \right) $


Correct Option: B