Tag: applications of matrices and determinants
Questions Related to applications of matrices and determinants
If $\omega$ is a cube root of unity and $x+ y + z = a, x + \omega y + \omega^2 z = b, x + \omega^2 y + \omega z = c$, then $x = $ ............
If $f(x) = ax^2 + bx + c, a, b, c \in R$ and equation $f(x)- x = 0$ has non-real roots $\alpha, \beta$. Let $\gamma, \delta$ be the roots of $f(f(x)) - x = 0$ ($\gamma, \delta$ are not equal to $\alpha, \beta$). Then $\begin{vmatrix} 2 & \alpha & \delta\ \beta & 0 & \alpha\ \gamma & \beta & 1\end{vmatrix} $ is
If $\displaystyle \omega$ is cube root of unity and $\displaystyle x + y + z = a$, $\displaystyle x + \omega y + \omega^{2} z = b$, $\displaystyle x + \omega^{2} y + \omega z = b$ then which of the following is not correct?
Consider the system of equations $x-2y+3z=-1,
-x+y-2z=k , x-3y+4z=1$
STATEMENT - 2 : The determinant $\begin{vmatrix}
1 & 3 & -1\
-1 & -2& k\
1& 4& 1
\end{vmatrix}$ $\neq 0$ for $k\neq 3$
The values of $\theta $ lying between $\theta =0$ and $\theta =\dfrac {\pi}{2}$ and satisfying the equation
$\begin{vmatrix}
1+\sin ^{2}\theta & \cos ^{2}\theta & 4\sin 6\theta \
\sin ^{2}\theta & 1+\cos ^{2}\theta & 4\sin 6\theta \
\sin ^{2}\theta & \cos ^{2}\theta & 1+4\sin 6\theta
\end{vmatrix}$
are given by
If $ \displaystyle a+b+c=0$ then value of $ \displaystyle (s) $ of $x$ which makes $\displaystyle \begin{vmatrix}
a-x &c &b \
c&b-x &a \
b & a &c-x
\end{vmatrix}$ zero is (are)
Consider the system of equations:
$x+y+z=0$
$\alpha x+\beta y+\gamma z=0$
$\alpha^2 x+\beta^2 y+\gamma^2 z=0$
Then the system of equations has
The following system of equations
$x+y+z=1$
$2x+2y+2z=3$
$3x+3y+3z=4$ has
Let $S$ be the set of all column matrices $\begin{bmatrix}b _{1}\b _{2} \ b _{3}
\end{bmatrix}$ such that $b _{1}, b _{2}, b _{3} \ \epsilon \ \mathbb {R}$ and the system of equation (in real variables)
$-x + 2y + 5z = b _{1}$
$2x - 4y + 3z = b _{2}$
$x - 2y + 2z = b _{3}$
has at least one solution. Then, which of the following system(s) (in real variables) has/have at least one solution of each $\begin{bmatrix}b _{1}\ b _{2}\ b _{3}
\end{bmatrix}\epsilon \ S$?
If $a{ e }^{ x }+b{ e }^{ y }=c;\quad p{ e }^{ x }+q{ e }^{ y }=d$ and $\quad { \Delta } _{ 1 }=\begin{vmatrix} a & b \ p & q \end{vmatrix};{ \Delta } _{ 2 }=\begin{vmatrix} c & b \ d & q \end{vmatrix};{ \Delta } _{ 3 }=\begin{vmatrix} a & c \ p & d \end{vmatrix}$ then the value of $(x,y)$ is: