Tag: applications of matrices and determinants
Questions Related to applications of matrices and determinants
Let A=$\left( {\begin{array}{{20}{c}}{ - 5}&{ - 8}&{ - 7}\3&5&4\2&3&3\end{array}} \right),B = \left( {\begin{array}{{20}{c}}x\y\z\end{array}} \right)$. If AB is scalar $\left( { \ne 0} \right)$ multiple of B, then x+y=
If $A = \left[ {\begin{array}{*{20}{c}}1&2\3&4\end{array}} \right]$, then $8A^{-4}$ is equal to
If $A$ and $B$ are square matrices such that $B=-A^{-1}BA$, then
If $A$ is a $2\times 2$ matrix such that $A^{2}-4A+3I=0$, then the inverse of $A+3I$ is equal to
If $A^{-1} = \alpha I + \beta I$ where $\alpha, \beta \in R$, then $\alpha + \beta$ is equal to (where $A^{-1}$ denotes inverse of matrix $A$)-
If $A=\begin{bmatrix} \alpha & 0 \ 1 & 1 \end{bmatrix}$ and $B=\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$, find the values of $\alpha$ for which $A^2=B$.
If $A=\left[ \begin{matrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{matrix} \right] $ and $10B=\left[ \begin{matrix} 4 & 2 & 2 \ -5 & 0 & \alpha \ 1 & -2 & 3 \end{matrix} \right] $ where $B=A^{-1}$ then $\alpha$ is equal to-
The inverse of the matrix $\left[ \begin{array} { c c c } { 1 } & { 0 } & { 0 } \ { 3 } & { 3 } & { 0 } \ { 5 } & { 2 } & { - 1 } \end{array} \right]$ is
If $A=\left[ \begin{matrix} 1 & 0 & -1 \ 3 & 4 & 5 \ 0 & 6 & 7 \end{matrix} \right]$ and $A^{-1}=[\alpha _{ij}] _{3\times 3}$ then $\alpha _{23}=$
Let $P=\begin{bmatrix} \cos { \dfrac { \pi }{ 9 } } & \sin { \dfrac { \pi }{ 9 } } \ -\sin { \dfrac { \pi }{ 9 } } & \cos { \dfrac { \pi }{ 9 } } \end{bmatrix}$ and $\alpha,\ \beta,\ \gamma$ be non-zero real numbers such that $\alpha P^{6}+\beta P^{3}+\gamma 1$ is the zero matrix. Then, $(\alpha^{2}+\beta^{2}+\gamma^{2})^{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ is