Tag: applications of matrices and determinants
Questions Related to applications of matrices and determinants
System of equations
$x + 2y + z = 0, 2x + 3y- z = 0 $ and $(tan\theta) x + y -3z = 0$ has non-trivial solution then number of value(s) of $\theta \epsilon (-\pi,\pi)$ is equal to?
The number of values of $\theta \in (0,\pi )$ for which the system of linear equations
x+3y+7z=0
x+4y+7z=0
$(\sin { 3\theta } )x+(\cos { 2\theta } )y+2z=0$
has a non trivial solution is :
Find the inverse f the following matrices by using transformation method.
If $A=\begin{bmatrix} \cos { x } & \sin { x } \ -\sin { x } & \cos { x } \end{bmatrix}$ and $A(AdjA)=k\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$ then the value of $k$ is
If A be square matrix of order n and k is a scalar, then adj (KA) is:
If $A=\left[ \begin{matrix} 2 & -3 \ -4 & 7 \end{matrix} \right] $, then ${2A}^{-1}=$
If AB = AC then
$A=\begin{bmatrix} \cos\theta & -\sin\theta \ \sin\theta & \cos\theta\end{bmatrix}$ and $AB=BA=I$, then B is equal to
$A=\begin{bmatrix} 2&2&1\0&1&4\0&2&6\end{bmatrix}$, $B=\begin{bmatrix} 2&2&1\0&1&4\0&0&1\end{bmatrix}$
A= $\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$.