Tag: applications of matrices and determinants
Questions Related to applications of matrices and determinants
A is an involuntary matrix given by $A=\begin{bmatrix} 0 & 1 & -1\ 4 & -3 & 4\ 3 & -3 & 4\end{bmatrix}$ then the inverse of $\dfrac{A}{2}$ will be?
If $A\begin{bmatrix} 1 & 1\ 2 & 0\end{bmatrix}=\begin{bmatrix} 3 & 2\ 1 & 1\end{bmatrix}$, then $A^{-1}$ is given by?
If $A=\left[ \begin{matrix} 3 & -3 & 4 \ 2 & -3 & 4 \ 0 & -1 & 1 \end{matrix} \right] $, then value of $A^{-1}$ is equal to
If A and B are any $2\times2$ matrices, then det. (A+B) =0 implies
If $A^2-A+1=0$, then the inverse of A is?
Let $\begin{bmatrix} 1 & 1\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 3\ 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & n-1\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 78\ 0 & 1\end{bmatrix}$
If $A=\begin{bmatrix} 1 & n\ 0 & 1\end{bmatrix}$ then $A^{-1}=?$
If $\displaystyle A=\begin{bmatrix} 0 & 0 & 1\ 0 & 1&0 \ 1& 0 & 0\end{bmatrix}$, then $A^{-1}$ is.
Let $A=\begin{bmatrix} 1 & -1 & -1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{bmatrix}$ and $10B=\begin{bmatrix} 4 & 2 & 2 \ -5 & 0 & \alpha \ 1 & -2 & 3 \end{bmatrix}$, if $B$ is the inverse of matrix $A$, then $\alpha $ is
If $\begin{bmatrix} 1 & 2 \ 3 & -5 \end{bmatrix}$, then ${A}^{-1}$ is equal to
If you switch the first row with the fourth row, what will the new first row be?
$\begin{bmatrix}3&4&2&11\9&1&0&0\0&1&0&2\0&0&6&1\end{bmatrix}$