Tag: properties of inverses of matrices
Questions Related to properties of inverses of matrices
For two suitable order matrices $A, B$; correct statement is-
If A is a $3 \times 3$ matrix such that $\left| A \right| = 4\ than\ \left| {{{\left( {adjA} \right)}^{ - 1}}} \right| = $
If the matrices $A, B, (A+B)$ are non singular then ${[A{(A+B)}^{-1}B]}^{-1}$ is equal to-
If $A$ is an invertible matrix of order $2$, then $det({A}^{-1})$ is equal to
Let $A,B$ and $C$ be square matrices of order $3\ \times 3$. If $A$ invertible $(A-B)C=BA^{-1}$, then
A square non-singular matrix A satisfies $\displaystyle A^{2}-A+2I=0$, then $\displaystyle A^{-1}=$
If $A$ satisfies the equation $\displaystyle x^{3}-5x^{2}+4x+\lambda =0$, then $\displaystyle A^{-1}$ exists if
If $A$ is an invertiable idempotent matrix and $B=7A^{7}+6A^{6}+5A^{5}+......+A$ then $|B|$ is equal to
If $\begin{bmatrix} 1 & -1 & x \ 1 & x & 1 \ x & -1 & 1 \end{bmatrix}$ has no inverse, then the real value of $x$ is
Let p be a nonsingular matrix, and $I + p + p^2 + ..... + p^n = 0$, then find $p^{-1}$.