Tag: properties of inverses of matrices
Questions Related to properties of inverses of matrices
If A and B are invertible matrices, which one of the following statement is/are correct
If $A=\begin{bmatrix} 1 & -2 \ 3 & 0 \end{bmatrix}$, $B=\begin{bmatrix} -1 & 4 \ 2 & 3 \end{bmatrix}$, and $ABC=\begin{bmatrix} 4 & 8 \ 3 & 7 \end{bmatrix}$, then $C$ equals
If $A _{3X3}$ and $ det A= 2$ then $det A^{-1}=$
The value of $(\mathrm{A}$dj $\mathrm{A})^{-1}$ is equal to
lf the value of a third order determinant is 11, then the value of the determinant of $A^{-1}=$
. $\mathrm{If}$ $\mathrm{A}$ is non-singular matrix such that $A^{2}=A^{-1}$ then $adjA=$
Let A and B be two non-singular matrices which commute. The $A^{-1}$, $B^{-1}$
$\mathrm{A}\mathrm{B}\mathrm{A^{-1}}$ $=\mathrm{X}$ then $\mathrm{B}^{2}=$
If $A = \begin{bmatrix} 2 & 3\ 5 & 1 \end{bmatrix},$ then find $A^{-1}$
If $A$ and $B$ are two non singular matrices of the same order such that ${ B }^{ r }=I$, for some positive integer $r>1$, then ${ A }^{ -1 }{ B }^{ r-1 }{ A }-{ A }^{ -1 }{ B }^{ -1 }A=$