Tag: properties of inverses of matrices
Questions Related to properties of inverses of matrices
If $\begin{pmatrix}1 & -tan \theta\ tan \theta & 1\end{pmatrix} \begin{pmatrix} 1 & tan \theta\ - tan \theta & 1\end{pmatrix}^{-1} = \begin{bmatrix} a& -b\ b & a\end{bmatrix}$, then
$A = \begin{bmatrix} 1& 0 & 0\0 & 1& 1\ 0 & -2 & 4\end{bmatrix}, I = \begin{bmatrix}1 & 0 & 0\ 0& 1 & 0\ 0 & 0 & 1\end{bmatrix}$ and $A^{-1} = \left [ \dfrac{1}{6} (A^2 + cA + dI) \right]$
The value of $(c,d)$ is
Two $n \times n$ square matrices $A$ and $B$ are said to be similar if there exists a non-singular matrix $P$ such that $P^{-1}A: P=B$
If $A$ and $B$ are two non-singular matrices, then
Two $n \times n$ square matrices $A$ and $B$ are said to be similar if there exists a non-singular matrix $P$ such that $P^{-1}A: P=B$
If $A$ and $B$ are similar matrices such that $det :(A) =1$, then
Two $n \times n$ square matrices $A$ and $B$ are said to be similar if there exists a non-singular matrix $P$ such that $P^{-1}A: P=B$
If $A$ and $B$ are similar and $B$ and $C$ are similar, then