Tag: properties of inverses of matrices
Questions Related to properties of inverses of matrices
If $A$ is a square matrix, $B$ is a singular matrix of same order, then for a positive integer $n,(A^{-1}BA)^n$ equals
-
$A^{-n}B^nA^n$
-
$A^nB^nA^{-n}$
-
$A^{-1}B^nA$
-
$n(A^{-1}BA)$
Consider $n=2$
If $A$ is a scalar matrix with scalar $k \neq 0$, of order $3$, then $kA^{-1}$ is:
-
$\dfrac{1}{k}I$
-
$\dfrac{1}{k^2}I$
-
${k^2}I$
-
$\dfrac{1}{k^3}I$
If $A$ and $B$ are two non-zero square matrices of the same order such that the product $AB=0$, then
-
both A and B must be singular
-
exactly one of them must be singular
-
atleast one of them must be non-singular
-
none of these
Assume that $A$ is non-singular, then $A^{-1}$ exists. Thus
$AB =0 \Rightarrow A^{-1}(AB) =(A^{-1}:A)B = 0$
$ \Rightarrow IB =0$
$\therefore B =0$. A contradiction.
$\Rightarrow$ A is singular, similarly B is also singular.
Hence, both A and B must be singular.
The inverse of a symmetric matrix (if it exists) is
-
a symmetric matrix
-
a skew symmetric matrix
-
a diagonal matrix
-
none of these
Let $A$ be an invertible symmetric matrix.
$\therefore AA^{-1}=A^{-1}:A=I _n$
$\Rightarrow ( AA^{-1})'=(A^{-1}:A)'=(I _n)'$
$\Rightarrow ( A^{-1})'A'=A'(A^{-1})'=(I _n)$
$\Rightarrow ( A^{-1})'A=A(A^{-1})'=(I _n)$
$\Rightarrow ( A^{-1})'=A^{-1}$ [inverse of a matrix is unique]
i.e $A^{-1}$ is symmetric.
Hence, option A.
Let $A=\begin{bmatrix} 1&0 \1 &1 \end{bmatrix}$ then
-
$A^{-n}=\begin{bmatrix} 1&0 \-n &1 \end{bmatrix}\forall : n: \in: N$.
-
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n}A^{-n}=\begin{bmatrix} 0&0 \-1 &0 \end{bmatrix}$
-
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n^2}A^{-n}=\begin{bmatrix} 0&0 \0 &0 \end{bmatrix}$
-
none of these
$A^{-1}=\begin{bmatrix}1 &0 \-1 &1 \end{bmatrix}$
$A^2=\begin{bmatrix}1 &0 \1 &1 \end{bmatrix}\begin{bmatrix}1 &0 \1 &1 \end{bmatrix}=\begin{bmatrix}1 &0 \2 &1 \end{bmatrix}$
$A^{-2}=\begin{bmatrix}1 &0 \-2 &1 \end{bmatrix}$
$\Rightarrow A^{-n}=\begin{bmatrix}1 &0 \-n &1 \end{bmatrix}$
$\displaystyle \frac{1}{n} A^{-n}=\begin{bmatrix}1/n &0 \-1 &1/n \end{bmatrix}$
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n}A^{-n}=\begin{bmatrix} 0&0 \-1 &0 \end{bmatrix}$
and $\displaystyle \frac{1}{n^2} A^{-n}=\begin{bmatrix}1/n^2 &0 \-1/n &1/n ^2\end{bmatrix}$
$\displaystyle \lim _{n\rightarrow \infty }\displaystyle \frac{1}{n^2}A^{-n}=\begin{bmatrix} 0&0 \0 &0 \end{bmatrix}$
Hence, options A,B and C.
If $A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$, then
-
$|AB|=0\Rightarrow |B|=0$
-
$|AB|\neq 0\Rightarrow |B|\neq 0$
-
$|A^{-1}|=|A|^{-1}$
-
$|2A|=2|A|$
$A$ and $B$ are $3\times 3$ matrices and $|A|\neq 0$
1.$|AB|=|A||B|=0$ $\Rightarrow |B|=0$
2.$|AB|=|A||B|\neq 0$ $\Rightarrow |B|\neq 0$
3.$AA^{-1}=I$ $\Rightarrow |A||A^{-1}|=1$
$\therefore |A^{-1}|=|A|^{-1}$
4.$|2A|= 8|A|$ ($\because |kA|=k^n|A|$)
Hence, options A,B and C.
If $A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$, then inverse of $A$ is
-
$I$
-
$A$
-
$(a + d)A$
-
none of these
$A =\begin{bmatrix}a &b \c &d \end{bmatrix}$ such that $A$ satisfies the relation $A^2- (a + d)A = 0$
$\Rightarrow A^2-(a+d)A=0$
$\Rightarrow \begin{bmatrix}a &b \c &d \end{bmatrix}\begin{bmatrix}a &b \c &d \end{bmatrix}-(a+d)\begin{bmatrix}a &b \c &d \end{bmatrix}=\begin{bmatrix}0 &0 \0 &0 \end{bmatrix}$
$\Rightarrow \begin{bmatrix}a^2+bc &ab+bd \ac+cd &bc+d^2 \end{bmatrix}-(a+d)\begin{bmatrix}a &b \c &d \end{bmatrix}=\begin{bmatrix}0 &0 \0 &0 \end{bmatrix}$
$\Rightarrow a^2+bc-a^2-ad=0$
$\Rightarrow ad-bc=\begin{vmatrix}a &b \c &d \end{vmatrix}=0$
$\therefore$ Inverse of A doesnot exist.
Hence, option D.
Let the matrix A and B be defined as $A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$ then the value of Det.$(2A^9B^{-1})$, is
-
$2$
-
$1$
-
$-1$
-
$-2$
$A =\begin{bmatrix}3 &2 \ 2 &1 \end{bmatrix}$ and $B= \begin{bmatrix}3 &1 \ 7 &3 \end{bmatrix}$
If $P$ is a two-rowed matrix satisfying $P^T = P^{-1}$, then $P$ can be
-
$\begin{bmatrix}cos\, \theta & -sin\, \theta \ -sin\,\theta & cos\, \theta \end{bmatrix}$
-
$\begin{bmatrix}cos\, \theta & sin\, \theta \ -sin\,\theta & cos\, \theta \end{bmatrix}$
-
$\begin{bmatrix}-cos\, \theta & sin\, \theta \ sin\,\theta & -cos\, \theta \end{bmatrix}$
-
none of these
$A=\begin{bmatrix} cos\theta & -sin\theta \ -sin\theta & cos\theta \end{bmatrix},{ A }^{ T }=\begin{bmatrix} cos\theta & -sin\theta \ -sin\theta & cos\theta \end{bmatrix},$
hence $P=B=\begin{bmatrix} cos\theta & sin\theta \ -sin\theta & cos\theta \end{bmatrix}$
Let A be an invertible matrix then which of the following is/are true
-
$|A^{-1}| = |A|^{-1}$
-
$(A^2)^{-1} = (A^{-1})^2$
-
$(A^T)^{-1} = (A^{-1})^T$
-
none of these